
On the Communication and Round
Complexity of Secure Computation

Antigoni Polychroniadou

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark





On the Communication and Round
Complexity of Secure Computation

A Dissertation
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

31. december 2016

Author:
Antigoni Polychroniadou

Supervisor:
Prof. Ivan Damgård





Abstract
Secure Multi-Party Computation (MPC) is a cryptographic technique allowing us to build di-

stributed computer systems for private data. Such systems often operate in hostile environments
where they are subjected to various attacks by adversarial parties. Communication efficiency is
an important goal in the design of cryptographic protocols. However, the exact communication
and computational complexity of general secure MPC protocols is not very well understood, de-
spite the fact that they were introduced already in the 80s. Even though their efficiency has been
significantly improved in recent years, we are still far from being able to apply MPC to large-
scale computations. The research goal of this thesis is to advance the state of the art of MPC
protocols by establishing new lower bounds in an effort to explore their efficiency limitations
and by subsequently constructing secure MPC protocols with optimal complexities, measured
in rounds of interaction, number of communicated bits and computational overhead.

More specifically, there are no known lower bounds on the communication complexity of
general MPC protocols in the Information-Theoretic (IT) setting without the need of crypto-
graphic assumptions. Even in the computational setting based on cryptographic assumptions
there are also no known lower bounds on the round complexity of MPC protocols without the
need of an initial trusted setup phase. Moreover, many feasibility results are prohibitively ineffi-
cient. In this thesis, we first establish lower bounds on the communication complexity of secure
MPC protocols and finally construct secure MPC protocols with optimal complexities for both
IT (Part III) and computationally secure protocols (Part II).
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Resumé
Sikker distribueret beregning (SDB) er en kryptografisk teknik der tillader os at bygge di-

stribuerede IT systemer der håndterer private data. Sådanne systemer opererer ofte i fjendtlige
omgivelser hvor de udsættes for forskellige angreb. Kommunikationseffektivitet er et vigtigt de-
signmål for kryptografiske protokoller. Men den eksakte kommunikations- og runde kompleksitet
af generelle protokoller for SDB er ikke velforstået, påtrods af at de blev introduceret allerede
i 80-erne. Selvom effektiviteten er blevet væsentligt forbedret i de senere år er vi stadig langt
væk fra at kunne anvende SDB i store beregninger. Målet for denne afhandling er at forbedre
status for SDB protokoller ved at etablere nye nedre grænser og dermed udforske grænserne
for effektivitet, og dernæst at konstruere nye SBD protokoller med optimal kompleksitet målt i
runder, kommunikation og beregningsmæssigt arbejde.

Mere specifikt, der er ingen kendte nedre grænser for kommunikationskompleksitet i den
informations teoretiske (IT) model, hvor der ikke anvendes kryptografiske antagelser. Selv i den
beregningsmæssige model er der heller ikke nogen grænser for rundekompleksiteten, når der ikke
antages sikker opsætning. Endvidere giver mange af de kendte generelle resultater anledning til
protokoller som er uanvendelige i praksis. I denne afhandling introducerer vi først nedre grænser
for kommunikationskompleksiteten af sikre SDB protokoller og endelig konstruere vi sikre SDB
protokoller med optimal kompleksitet for både IT modellen (Part III) og den beregningsmæssige
model (See Part II).
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Chapter 1

Motivation
A central as well as fundamental problem in cryptography is the study of secure Multi-Party

Computation (MPC) cryptosystems. MPC is a cryptographic technique allowing us to build
secure distributed computer systems over confidential data operating in hostile environments
subject to various attacks by adversarial parties. In particular, such systems allow a set of
mutually distrustful group of parties to compute a joint function on their inputs without the
need of a trusted third party, while still maintaining both the privacy of the inputs and the
correctness of the outputs. In the presence of a trusted third party the problem is trivial since
all parties could privately send their inputs to the trusted third entity, which computes the
function on behalf of the parties and announces the result. The feasibility MPC results from the
’80s [Yao82, GMW87, BOGW88, CCD88], tell us that the parties can replace the trusted entity
with a cryptographic MPC protocol while still preserving the same level of security that the
trusted entity intuitively provides. There are countless applications of MPC such as electronic
elections, electronic auctions, secure benchmarking and secure signal processing, to name just
a few. Last but not least, distributed MPC systems seem to be one of the only viable defences
against organised hacking and hostile intelligence services since data can only be stolen by
breaking into almost all the computers.

Communication efficiency is an important goal in the design of MPC protocols. In partic-
ular, the exact communication complexity of general MPC protocols, since their inception in
the ’80s, is not very well understood neither in the Information-Theoretic (IT) setting without
the need of cryptographic assumptions nor in the computational setting based on cryptographic
assumptions. Moreover, many fundamental results in the area of MPC are prohibitively ineffi-
cient. Note that even though the efficiency of MPC protocols has been significantly improved in
recent years, we are still very far from being able to apply MPC to large-scale, cloud computing
and big data applications. All these issues are illustrated by the following shortcomings:

• Shortcoming-1 [Computational Setting]: Even in the computational setting based on cryp-
tographic assumptions there are no known MPC protocols for general functionalities with
optimal round complexity, while still getting the best possible security. In fact, there are
no known lower bounds on the round complexity of MPC protocols without trusted setup.

• Shortcoming-2 [Information-Theoretic Setting]: The methods typically used in IT MPC
protocols tend to be computationally much more efficient than the cryptographic machin-
ery used in the computational setting but on the other hand, known IT constructions
require excess communication. There are even no (non-trivial) known lower bounds on
the communication/round complexity of general IT MPC protocols. Such lower bounds
would enable us to focus our attention to where efficiency improvements are possible.

• Shortcoming-3 [Secure RAM Computation]: IT and computationally secure protocols have
traditionally been developed in the circuit model of computation. However, a lot of recent
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work focuses on improving the overhead of such protocols when applied to realistic compu-
tations that are designed for accessing Random Access Machines (RAMs). However, there
are no known protocols over large inputs in the RAM model with minimal complexities.

The goal of this thesis is to advance the state of the art in MPC protocols by the establishment
of lower bounds on the communication and round complexity of secure MPC protocols as well
as the instantiation of secure MPC protocols with optimal efficiency complexities. Important
measures in this respect are the number of rounds we need to do, the communication complexity
(the total number of bits sent) as well as the computational overhead. Obviously, achieving a
constant number of rounds and low communication complexity, while still getting the best
possible security, is an important research goal. To this end, this thesis focuses on the following
three main objectives: (1) establish (non-trivial) lower bounds on the round complexity of
computationally secure MPC protocols without setup (2) investigate the limitations of what we
can achieve by showing lower bounds for Information-Theoretic MPC protocols, attacking a
long-standing open problem and (3) construct new MPC protocols with optimal complexities
based on different setup assumptions (or without setup) under the strongest security guarantees.
Finally, achieve minimal overhead for cryptographic protocols in the RAM model.
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Chapter 2

Contributions
We stress that current IT secure protocols, which are efficient in the circuit size of the

evaluated function, are not constant round, and we highlight that it is a major open problem
if it is even possible to have unconditional security and constant number of rounds for secure
computation of any function. However, if we are willing to make computational assumptions,
we can achieve constant round protocols. This state of affairs leads to the aforementioned
objectives in Chapter 1. In this thesis, we make progress towards these goals and in most cases
we completely achieve them. To this end, we state our contributions of secure computation
in the computational setting, IT setting as well as mention our results in the RAM model
of computation. Parts of the following sections are partially based on text from our work in
[GMPP16, HPV16, HPV17, GP15, DPR16, DNPR16, GIP15].

2.1 Computational Setting

Unlike the IT setting, it is actually possible to achieve constant round protocols in the com-
putational setting. The first example of such a constant round protocol is Yao’s garbled cir-
cuits [Yao82, Yao86], a form of encrypted circuits, for secure Two-Party Computation (2PC).
Since then secure protocols have been constructed in a long series of works in the plain model
without trusted setup assumptions. In order to achieve strong concurrency security guarantees
such as Universal Compossibility (UC) [Can01], secure protocols have also been constructed
from trusted setup assumptions such as the Common Reference String (CRS) model where all
parties receive as common input, in an initial setup phase, a string sampled from an a priori fixed
distribution (from some trusted authority). Furthermore, secure protocols have been designed
based on decentralized setup assumptions such as the tamper-proof hardware token model. In
the following, we present our results in the plain, CRS and hardware token model.

2.1.1 Secure Computation in the Plain Model

The round complexity of secure computation is a fundamental question in the area of se-
cure computation. In the past few years, we have seen tremendous progress on this ques-
tion, culminating into constant round protocols for securely computing any MPC functional-
ity [BMR90, KO04, Pas04, DI05, DI06, PPV08, Wee10, Goy11, LP11a, GLOV12]. These works
essentially settle the question of asymptotic round complexity of this problem. The exact round
complexity of secure computation, however, is still not very well understood. 1 For the special
case of 2PC, Katz and Ostrovsky [KO04] proved that five rounds are necessary and sufficient. In
particular, they proved that two-party coin-flipping cannot be achieved in four rounds, and pre-

1Our rough estimate for the exact round complexity of aforementioned MPC results in the computational
setting is 20-30 rounds depending upon the underlying components and computational assumptions.
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sented a five-round protocol for computing every 2PC functionality. The exact round complexity
of MPC protocols has never been addressed before.

The standard model for MPC assumes that parties are connected via authenticated point-
to-point channels as well as simultaneous message exchange channels in which all parties can
simultaneously send messages at the same time. Therefore, in each round, all parties can
simultaneously exchange messages.

This is in sharp contrast to the “standard” model for 2PC where, usually, a simultaneous
message exchange framework is not considered. Due to this difference in the communication
model, the negative result of Katz-Ostrovsky [KO04] of four rounds, does not apply to the
multi-party setting. In particular, a four round multi-party coin-flipping protocol might still
exist!

In other words, the results of Katz-Ostrovsky only hold for the special case of two parties
without a simultaneous message exchange channel. The setting of 2PC with a simultaneous
message exchange channel has not been addressed before. Therefore, in this work we address
the following two questions in the plain model which do not consider any trusted initial setup
or an initial trusted CRS distributed between the parties:

What is the exact round complexity of secure MPC in the plain model?
In the presence of a simultaneous message exchange channel, what is the exact round

complexity of secure 2PC in the plain model?

These questions are intimately connected to the round complexity of non-malleable commitments
[DDN91b]. Indeed, new results for non-malleable commitments have almost immediately trans-
lated to new results for secure computation. For example, the round complexity of coin-flipping
was improved by Barak [Bar02], and of every multi-party functionality by Katz, Ostrovsky,
and Smith [KOS03] based on techniques from non-malleable commitments. Likewise, black-
box constructions for constant-round non-malleable commitments resulted in constant-round
black-box constructions for secure computation [Wee10, Goy11] (see Section 3.1.1 for detailed
related work). However, all of these results only focus on asymptotic improvements and do not
try to resolve the exact round complexity, thereby leaving the following fundamental question
unresolved:

What is the relationship between the exact round complexities of non-malleable commitments
and secure computation?

This question is at the heart of understanding the exact round complexity of secure computation
in both multi-party, and two-party with simultaneous message transmission.

In this thesis we try to resolve the questions mentioned above. We start by focusing on the
simpler case of 2PC with a simultaneous message exchange channel, since it is a direct special
case of the MPC setting.

2.1.1.1 Lower bounds for coin-flipping

We show that four simultaneous message exchange rounds are necessary for 2PC in the plain
model. More specifically, we show that:

6



Theorem 2.1.1. [GMPP16] Let λ be the security parameter. Even in the simultaneous message
model, there does not exist a three-round protocol for the two-party coin-flipping functionality
for ω(log λ) coins which can be proven secure via black-box simulation.

In fact, as a corollary all of the rounds must be “strictly simultaneous message transmissions”,
that is, both parties must simultaneously send messages in each of the four rounds. This is
because in the simultaneous message exchange setting, the security is proven against the so called
“rushing adversaries” who, in each round, can decide their message after seeing the messages of
all honest parties in that round. Consequently, if only one party sends a message for example
in the fourth round, this message can be “absorbed” within the third message of this party 2,
resulting in a three round protocol.

2.1.1.2 Results in the 2PC setting with a simultaneous message exchange channel

Next, we consider the task of constructing a protocol for coin-flipping (or any general function-
ality) in four simultaneous message exchange rounds and obtain a positive result. In fact, we
obtain our results by directly exploring the exact relationship between the round complexities of
non-malleable commitments and secure computation. Specifically, we first prove the following
result:

Theorem 2.1.2. [GMPP16] Assuming the existence of enhanced trapdoor permutations and
a k-round protocol for parallel & 3-robust non-malleable commitment,3 there exists a k′-round
protocol for securely computing every two-party functionality with black-box simulation in the
plain model against any malicious adversary under simultaneous message exchange channels,
where k′ = max(4, k + 1).

Instantiating this protocol with non-malleable commitments from [PPV08], we get a four
round protocol for every two-party functionality in the presence of a simultaneous message ex-
change channel, albeit under a non-standard assumption (adaptive one-way function). However,
a recent result by Goyal et al. [GPR16] constructs a non-malleable commitment protocol in three
rounds from one-way function, although their protocol is not 3-robust and does not immediately
extend to the parallel setting. Instantiating our protocol with an extention of [GPR16] presented
in [COSV16b] based on one-way permutations secure w.r.t. sub-exponential time adversaries
yields a four round 2PC protocol.

2Note that, such absorption is only possible when it maintains the mutual dependency among the messages,
in particular does not affect the next-message functions.

3Parallel simply means that the man-in-the-middle receives κ non-malleable commitments in parallel from the
left interaction and makes κ commitments on the right. Almost all known non-malleable commitment protocols
satisfy this property. We describe the notion of a robust non-malleable commitment in Section 4.2.1; informally,
traditional definitions of non-malleability consider a setting where a man-in-the middle adversary is participating
in two (or more) executions of the same protocol. However, non-malleable commitments robust w.r.t. arbitrary
protocols considers a class of adversaries that can participate in a left interaction of any arbitrary protocol. We
consider 3-robust protocols secure against 3-round arbitrary protocols.
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2.1.1.3 Results in the multi-party setting

Next, we focus on the case of the multi-party coin flipping functionality. We show that a simpler
version of our two-party protocol gives a result for multi-party coin-flipping presented in two
versions:

Theorem 2.1.3. [GMPP16] Assuming the existence of enhanced trapdoor permutations and
a k-round protocol for parallel & 3-robust non-malleable commitment, there exists a k′-round
protocol for securely computing themulti-party coin-flipping functionality for polynomially many
coins with black-box simulation in the plain model against any malicious adversary, where
k′ = max(4, 2k).

Theorem 2.1.4. [GMPP16] Assuming the existence of enhanced trapdoor permutations and
a k-round protocol for parallel, input-delayed & 3-robust non-malleable commitment, there
exists a k′-round protocol for securely computing the multi-party coin-flipping functionality for
polynomially many coins with black-box simulation in the plain model against any malicious
adversary, where k′ = max(4, k + 1).

Combining this result with the two-round multi-party protocol of Mukherjee and Wichs
[MW16] (based on LWE [Reg05]), we obtain a k′ + 2 round protocol for computing every
multi-party functionality. Instantiating these protocols with non-malleable commitments from
[PPV08]4, we obtain a four round protocol for coin-flipping and a six round protocol for every
functionality.

Finally, we show that the coin-flipping protocol for the multi-party setting can be extended to
compute what we call “coin-flipping with committed inputs” functionality. Using this protocol
with the two-round protocol of [GGHR14] based on indistinguishability obfuscation [GGH+13b],
we obtain a five round MPC protocol.

2.1.1.4 Subsequent and future work

The subsequent work of [BHP17] shows how to achieve an optimal (four) round MPC protocols
based on the non-malleable commitment of [PPV08] and hardness of LWE.

A lot of work has been done recently on reducing the round complexity and computational
assumptions of non-malleable commitments, see [COSV16b, GKS16, COSV16a]. In order to
build four round protocols based on standard as well as minimal assumptions, one possible
avenue is to construct a parallel (and 3-robust) three-round non-malleable commitment scheme
based on standard assumptions.

2.1.2 Secure Computation in the CRS Model

We start by noting that two rounds of interaction are essential for realizing 2PC and MPC
protocols in the CRS model. This is because a one-round protocol is inherently susceptible to
the “residual function” attack in which a corrupted party could repeatedly evaluate the “residual

4The work of [PPV08] provides non-interactive and two-round non-malleable commitment schemes based on
adaptive OWFs.

8



function”, with the inputs of the honest parties fixed, on many different inputs of its own (e.g.,
see [HLP11]). This attack can be circumvented by having two rounds of interaction — where
for example in the first round parties commit to their inputs and the output is generated only in
the second round. The first round commitments guarantee that the “residual function” attack
can not be performed in this setting.

The two-round lower bound holds for both the static and the adaptive setting. Unlike the
static setting where the adversary corrupts parties on the onset of the protocol, adaptive security
ensures that security holds against an adversary who can dynamically corrupt parities during
the execution of the protocol. In general, security against static corruptions does not guarantee
security against adaptive corruptions [CDD+04]. Furthermore, adaptive security has been a
notoriously difficult notion to achieve. For the static setting, Yao’s original two-party secure
computation protocol [Yao82] was already round-optimal. However, achieving similar results
in the adaptive setting has remained open. Therefore, we focus on the adaptive setting in this
section. See Section 3.1.2 for detailed related work.

Adaptive security is particularly hard to achieve in settings where arbitrary number of parties
can be corrupted and honest parties are not trusted to properly erase their internal state.
Specifically the round complexity of all known adaptively secure protocols secure against an
arbitrary number of corruptions grows (see, e.g. [CLOS02, GS12, DMRV13]) linearly in the
depth of the circuit that the parties are trying to compute. We stress that for this problem,
this limitation holds for essentially every special case of interest — namely, even if we were to
restrict to semi-honest/passive adversaries or to the special case of two-party protocols.

In this thesis we ask the following fundamental question:

Is it possible to construct a constant/optimal round MPC protocol secure against
adaptive corruption of arbitrary number of parties?

2.1.2.1 Results on adaptive security for arbitrary corruptions

We answer the above question in the affirmative and show how to obtain a two-round adaptively
secure MPC protocol which is round-optimal. Specifically:

Theorem 2.1. [GP15] Assuming sub-exponentially secure indistinguishability obfuscation and
doubly enhanced trapdoor permutations, we show that every multi-party functionality can be
UC-securely [Can01] computed in the CRS model against any adaptive, malicious adversary
corrupting an arbitrary number of parties with just two rounds of broadcast.

We stress that in the above theorem we are in the setting where security holds against an
adversary corrupting any arbitrary number of parties. Furthermore, honest parties in our case
are not required to erase anything. Also note that our results are for the strongest notion of
security, the UC security. This means that our protocol remains secure even when multiple
instances of our protocol are executed simultaneously. Since it is impossible to achieve UC
security for dishonest majority without assuming trusted setup assumptions [CF01, CKL03,
Lin03a], we base our construction in the CRS model. In our results we consider an asynchronous
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multi-party network5 where the communication is open (i.e. all the communication between the
parties is seen by the adversary) and delivery of messages is not guaranteed. For simplicity,
we assume that the delivered messages are authenticated. This can be achieved using standard
methods.

2.1.2.2 Subsequent and future work for arbitrary corruptions

A subsequent work by [CP16] lift our protocol in the RAM model of computation and present a
two-round protocol that does not require sub-exponential use of indistinguishability obfuscation
only for the semi-honest case.

Since we can obtain two-round adaptive MPC protocols from indistinguishability obfuscation
assumptions we leave open the question of two-round adaptive MPC protocols in the CRS model
from standard assumptions.

2.1.2.3 Results on adaptive security for all-but-one corruptions

Restricting the adversary to all-but-one corruptions, there no known optimal-round adaptive
protocols based on standard assumptions. In addition, as far as communication complexity is
concerned, all known constant-round protocols 6, such as the work of Ishai et al. [IPS08], require
communication complexity proportional to the circuit size of the evaluated function. Therefore,
the question becomes:

Is it possible to construct constant/optimal adaptive MPC protocols secure against
all-but-one corruptions with communication complexity independent of the circuit
size?

We answer the above question in the affirmative. More specifically, we achieve an adaptive
UC-secure protocol that tolerates corruption of n − 1 out of the n players with UC secure
composition with protocols secure against n − 1 corruptions. Our protocol requires a constant
number of rounds and its communication complexity depends only on the length of inputs and
outputs (and the security parameter), and not on the size of the evaluated and decryption
circuits. The protocol is secure if the LWE problem is hard. Moreover, we do not consider the
weaker model of secure erasures.

Theorem 2.2. [DPR16] Under the LWE assumption, we show that every multi-party func-
tionality can be UC-securely computed in the CRS model 7 against any adaptive, malicious
adversary corrupting all-but-one parties within a constant number of rounds and communica-
tion complexity dependant only on the length of the inputs and outputs of the functionality.

5The fact that the network is asynchronous means that the messages are not necessarily delivered in the order
which they are sent.

6The adaptive protocols of [IPS08] would generically yield a larger constant for the number of rounds i.e. 30
rounds.

7In our MPC protocols secure against all-but-one adaptive corruptions the common string is sampled from a
specific distribution. In particular, we assume that a public key has been distributed, and parties have been given
shares of the corresponding secret key.
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Assuming adaptively secure UC Non-Interactive Zero-Knowledge (NIZK), proposed by Groth
et al. [GOS12], and LWE our adaptive protocols run in three rounds.

Theorem 2.3. [DPR16] Assuming hardness of LWE and the existence of adaptively secure UC
NIZK, we show that every multi-party functionality can be UC-securely computed in the CRS
model against any adaptive, malicious adversary corrupting all-but-one parties within three
rounds of broadcast.

Note that in the above theorem the communication complexity of the derived adaptive
protocol is also dependant only on the length of the inputs and outputs of the evaluated function.
In our construction we assume a broadcast channel where encryption is performed using what we
call Equivocal Fully Homomorphic Encryption (FHE), a notion weaker than Non-Committing
Encryption (NCE)[CFGN96]. Using our equivocal scheme we also build adaptively secure UC
commitments and UC Zero-Knowledge (ZK) proofs (of knowledge) based on hardness of LWE.

Last but not least, in the standard ZK-based decryption used by approaches based on FHE,
all parties need to append a ZK proof with communication complexity dependant in the size
of the decryption circuit in order to prove correctness of decryption. Using an AMD code
mechanism [CDF+08] we avoid the use of ZK and achieve communication complexity that does
not scale with the decryption circuit. In particular, the total communication complexity of the
decryption phase of our concrete protocol is O(n2λ) where λ denotes the security parameter and
n the number of parties. Instead, our rough estimate on the complexity of [IPS08], combined
with the best known outer and inner protocols and optimized with the use of FHE based on
NCE, yield an overhead of Ω(n6λ5). Note that we have tried to be optimistic on the part of the
IPS compiler to not give our concrete protocol an unfair advantage.

Motivated by ruling out one possible approach to achieving adaptive security, Katz et
al. [KTZ13] showed that FHE with security against adaptive corruption of the receiver is im-
possible. In our setting, we distribute the secret key of an FHE scheme among n parties; since
we allow only n − 1 of the parties to be corrupted, the impossibility result from [KTZ13] does
not apply. Note that if an FHE scheme is to be of use in MPC, it seems to be necessary that
the players are able to decrypt, if not by themselves, at least by collaborating. But if corruption
of all n players was allowed, the adversary would necessarily learn all secret keys, and then the
impossibility result of [KTZ13] would apply. This suggests that our result for multi-party func-
tionalities with n− 1 corruptions is the best we can achieve based only on FHE from standard
assumptions.

2.1.2.4 Subsequent and future work for all-but-one corruptions

The authors in [LSS16] provide secure multi-party computation protocols based on our AMD
code mechanism to avoid the use of ZK in their constructions.

The work of [GVW15] proposed equivocal homomorphic trapdoor functions. Such primitives
could be used in conjunction with multi-key FHE to yield a two round MPC protocol, however,
in such an approach the CRS will still have to be sampled from a specific distribution. Therefore,
we leave open the question of proving or disproving the existence of adaptive two-round MPC
in the common random string model for all-but-one corruptions.
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2.1.3 Secure Computation in the Tamper-Proof Hardware Model

In this section, we first revisit secure computation for static corruptions in the tamper-proof
hardware model since there no known optimal round protocols from minimal assumptions even
against static corruptions. Recall that adaptive security has been a notoriously difficult notion
to achieve. Based on our results on Oblivious Transfer (OT) in the static setting we attack
the adaptive setting and we also present our contributions for protocols secure against adaptive
corruptions.

2.1.3.1 Static corruptions

Traditional results prove security in the stand-alone model, where a single set of parties run a
single execution of the protocol. However, the security of most cryptographic protocols proven
in the stand-alone setting does not remain intact if many instances of the protocol are exe-
cuted concurrently [Can01, CF01, Lin03a]. The strongest setting for concurrent security, known
as Universally Composable (UC) security [Can01] considers the execution of an unbounded
number of concurrent protocols in an arbitrary and adversarially controlled network environ-
ment. Unfortunately, stand-alone secure protocols typically fail to remain secure in the UC
setting. In fact, as mentioned above, without assuming some trusted help, UC-security is im-
possible to achieve for most tasks [CF01, CKL03, Lin03a]. Consequently, UC-secure proto-
cols have been constructed under various trusted setup assumptions in a long series of works;
see [BCNP04, CDPW07, Kat07, KLP07, CPS07, LPV09, DMRV13] for few examples.

One such setup assumption and the focus of this section is the use of tamper-proof hard-
ware tokens. Interestingly, the minimal assumption for secure computation based on tokens
is one-way functions. In contrast, secure computation constructions even in the CRS model,
necessarily require assumptions stronger than one-way functions [DNO10]. Furthermore, from
a practical perspective, there has been tremendous interest in the hardware community to de-
velop tamper-proof hardware. For instance, the next generation Intel chips, will provide a set
of extensions, referred to as Software Guard Extensions (SGX), in the architecture that aims
to provide integrity and privacy guarantees to security-sensitive computation performed on a
computer to guard from privileged software (for e.g., kernel) which is potentially malicious.8

The first work to model tokens in the UC framework was by Katz in [Kat07] who introduced
the FWRAP-functionality to capture such tokens and demonstrated feasibility of realizing general
functionalities with UC-security. Most of the previous works in the tamper proof hardware
[Kat07, CGS08, LPV09, GIS+10, DMRV13, CKS+14, DKMN15b] rely on this formulation. As
we explain next, this formulation does not provide adequate composability guarantees. We begin
by mentioning that any notion of composable security in an interactive setting should allow for
multiple protocols to co-exist in the same system and interact with each other. We revisit the
following desiderata put forth by Canetti, Lin and Pass [CLP10] for any notion of composable
security:

8Disclaimer: We are neither advocating nor proving that SGX will serve as a platform to implement the
protocols presented in the paper. We are merely observing the progress in the industry towards making tamper-
proof hardware more viable.
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Concurrent multi-instance security: The security properties related to local objects (in-
cluding data and tokens) of the analyzed protocol itself should remain valid even when
multiple instances of the protocol are executed concurrently and are susceptible to coor-
dinated attacks against multiple instances. Almost all prior works in the tamper proof
model do not specifically analyze their security in a concurrent setting. In other words,
they only discuss UC-security of a single instance of the protocol. In particular, when exe-
cuting protocols in the concurrent setting with tokens, an adversary could in fact transfer
a token received from one execution to another and none of the previous works that are
based on the FWRAP-functionality accommodate transfers.

Modular analysis: Security of the larger overall protocols must be deducible from the security
properties of its components. In other words, composing protocols should preserve security
in a modular way. One of the main motivations and features in the UC-framework is the
ability to analyze a protocol locally in isolation while guaranteeing global security. This
does not only enable easier design but identifies the required security properties. The
current framework proposed by Katz [Kat07] does not allow for such a mechanism.

The state-of-affairs regarding tamper-proof tokens leads us to ask the following question.

Does there exist a UC-formulation of tamper-proof hardware tokens that guarantees
strong composability guarantees and allows for modular design?

Since the work of [Kat07], the power of hardware tokens has been explored extensively
in a long series of works, especially in the context of achieving UC-security (for example,
[CGS08, MS08, GIS+10, DKM11, DMMN13, DKMN15b, CKS+14]). While the work of Katz
[Kat07] assumed the stronger stateful tokens, the work of Chandran, Goyal and Sahai [CGS08]
was the first to achieve UC-security using only stateless tokens. In this work we will focus
only on the weaker stateless token model. In the tamper-proof model with stateless tokens,
as we argue below, the issue of minimal assumptions and round-complexity have been largely
unaddressed. The work of Chandran et al. [CGS08] gives an O(λ)-round protocol (where λ
is the security parameter) based on enhanced trapdoor permutations. Following that, Goyal
et al. [GIS+10] provided a (problematic, as explained below) O(1)-round construction based
on Collision-Resistant Hash Functions (CRHFs). The work of Choi et al. [CKS+14], extending
the techniques of [GIS+10] and [DKM11], establishes the same result and provide a five-round
construction based on CRHFs. See Section 3.1.3 for detailed related work.

All previous constructions require assumptions stronger than one-way functions (OWFs),
namely either trapdoor permutations or CRHFs. Thus as a first question, we investigate the
minimal assumptions required for token-based secure computation protocols. The works of
[GIS+10] and [CKS+14] rely on CRHFs for realizing statistically-hiding commitment schemes.
Towards minimizing assumptions, both these works, originally considered a variant of their
respective protocols where they replace the construction of the statistically-hiding commitment
scheme based on CRHFs to the one based on OWFs [HHRS15] to obtain UC-secure protocols
under minimal assumptions (See Theorem 3 in [GIS+10] and Footnote 7 in [CKS+14]). While
analyzing the proof of this variant in the work of [GIS+10], we found an issue in the original
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construction based on CRHFs.9 More recently, the authors of [CKS+14] have removed this
observation in their updated version of the original work (see [CKS+13]).10 Given the state of
affairs, our starting point is to address the following fundamental question regarding tokens that
remains open.

Can we construct tamper-proof UC-secure protocols using stateless tokens assuming
only one-way functions?

A second important question that we address here is:

What is the round complexity of UC-secure two-party protocols using stateless tokens
assuming only one-way functions?

We remark here that relying on black-box techniques, it would be impossible to achieve non-
interactive secure computation even in the tamper proof model as any such approach would be
vulnerable to a residual function attack.11 This holds even if we allow an initial token exchange
phase, where the two parties exchange tokens (that are independent of their inputs). Hence, the
best we could hope for is two rounds.

(G)UC-secure protocols in the multi-party setting. In the UC framework, it is possible to
obtain UC-secure protocols in the MPC setting by first realizing the UC-secure oblivious transfer
functionality (UC OT) in the two-party setting and then combining it with general compilation
techniques (e.g., [Kil88, CLOS02, IPS08, LPV12] to obtain UC-secure multi-party computation
protocols. First, we remark that specifically in the stateless tamper-proof token model, prior
works fail to consider multi-versions of the OT-functionality while allowing transferability of
tokens which is important in an MPC setting.12 As such, none of the previous works explicitly
study the round complexity of multi-party protocols in the tamper proof model (with stateless
tokens), we thus address the following question.

Can we obtain round-optimal multi-party computation protocols with (G)UC-security
in the tamper proof model?

Unidirectional token exchange. Consider the scenario where companies such as Amazon or
Google wish to provide an email spam-detection service and users of this service want to keep
their emails private (so as to not have unwanted advertisements posted based on the content
of their emails). In such a scenario, it is quite reasonable to assume that Amazon or Google
have the infrastructure to create tamper-proof hardware tokens in large scale while the clients

9We remark that our observation only affects one particular result in [GIS+10], namely, realizing the UC-secure
oblivious transfer functionality based on CRHFs and stateless tokens.

10In private communication, the authors of [CKS+13] explained that the variant that naively replaces the
commitment with one based on one-way functions might be vulnerable to covert attacks.

11Recall that this attack allows the recipient of the (only) message to repeatedly evaluate the function on
different inputs for a fixed sender’s input.

12We remark that the work of [CKS+14] considers multiple sessions of OT between a single pair of parties.
However, they do not consider multiple sessions between multiple pairs of parties which is required to realize
UC-security in the multiparty setting.
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cannot be expected to create tokens on their own. Most of the prior works assume (require)
that both parties have the capability of constructing tokens. When relying on non-black-box
techniques, the work of [CKS+14] shows how to construct UC-OT using a single stateless token
and consequently requires only one of the parties to create the token. The work of Moran and
Segev in [MS08] on the other hand shows how to construct UC-secure two-party computation
via a black-box construction where tokens are required to be passed only in one direction,
however, they require the stronger model of stateful tokens. It is desirable to obtain a black-box
construction when relying on stateless tokens. Unfortunately, the work of [CKS+14] shows that
this is impossible in the fully concurrent setting. More precisely, they show that UC-security
is impossible to achieve for general functionalities via a black-box construction using stateless
tokens if only one of the parties is expected to create tokens. In this work, we therefore wish to
address the following question:

Is there a meaningful security notion that can be realized in a client-server setting
relying on black-box techniques using stateless tokens where tokens are created only
by the server?

2.1.3.2 Results in the static setting

As our first contribution, we put forth a formulation of the tamper-proof hardware as a “global”
functionality that provides strong composability guarantees. Towards addressing the various
shortcomings of the composability guarantees of the UC-framework, Canetti et al. [CDPW07]
introduced the Global Universal Composability (GUC) framework which among other things
allows to consider global setup functionalities such as a global reference string, and more recently
the global random oracle model [CJS14]. In this work, we put forth a new formulation of tokens
in the GUC-framework that will satisfy all our desiderata for composition. Furthermore, in
our formulation, we will be able to invoke the GUC composition theorem of [CDPW07] in a
modular way. A formal description of the FgWRAP-functionality can be found in Figure 5.2 and
more detailed discussion is presented in Section 5.2.

In the two-party setting we resolve both the round complexity and computational complexity
required to realize GUC-secure protocols in the stronger FgWRAP-hybrid stated in the following
theorem:

Theorem 2.1.5. [HPV16] Assuming the existence of OWFs, there exists a two-round protocol
that GUC-securely realizes every (well-formed) two-party functionality in the global tamper-
proof model assuming stateless tokens against any static, malicious adversary. Moreover, it only
makes black-box use of the underlying OWF.

As mentioned earlier, any (black-box) non-interactive secure computation protocol is vul-
nerable to a residual function attack assuming stateless tokens. Therefore, the best round
complexity we can hope for black box constructions assuming (stateless) tamper-proof tokens is
two, achieved by our results. In concurrent work [DKMN15a], Dottling et al. show how to obtain
UC-secure two-party computation protocols relying on OWFs via non-black-box techniques.

In the multi-party setting, our first theorem follows as a corollary of our results from the
two-party setting.
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Theorem 2.1.6. [HPV16] Assuming the existence of OWFs, there exists a O(df )-round protocol
that GUC-securely realizes every multi-party (well formed) functionality f in the global tamper-
proof model assuming stateless tokens against any static, malicious adversary, where df is the
depth of any circuit implementing f .

Furthermore, this construction relies on the underlying one-way function in a black-box
manner. Next, we improve the round complexity of our construction to obtain the following
theorem:

Theorem 2.1.7. [HPV16] Assuming the existence of OWFs and stand-alone semi-honest MPC,
there exists a three-round protocol that GUC-securely realizes every multi-party (well formed)
functionality in the global tamper-proof model assuming stateless tokens against any static,
malicious adversary.

We remark that our construction is black-box in the underlying one-way function but unlike
our previous theorem it relies on the code of the MPC protocol in a non-black-box way. In
particular, underlying MPC protocols typically rely on semi-honest oblivious transfer and our
construction is non-black-box in this assumptions. We could build semi-honest MPC from our
oblivious transfer protocol based on tokens from OWFs, constructed to achieve Theorem 2.1.5,
and eliminate the semi-honest MPC assumption in Theorem 2.1.7. Moreover, it is conceivable
that one can obtain a round-optimal construction if we do not require it to be black-box in the
underlying primitives.

Finally, in the client-server setting, we prove the following theorem:

Theorem 2.1.8. [HPV16] Assuming the existence of OWFs, there exists a two-round protocol
that securely realizes every two-party functionality assuming stateless tokens in a client-server
setting against any static, malicious adversary where the tokens are created only by the server.
We also provide an extension where we achieve UC-security against malicious clients and se-
quential and parallel composition security against malicious servers.

In more detail, we provide straight-line (UC) simulation of malicious clients and standard
rewinding-based simulation against malicious servers. Our protocols guarantee security of the
servers against arbitrary malicious coordinating clients and protects every individual client exe-
cuting sequentially or in parallel against a corrupted server. We believe that this is a reasonable
model in comparison to the Common Reference String (CRS) model where both parties require
a trusted entity to sample the CRS. Furthermore, it guarantees meaningful concurrent security
that is otherwise not achievable in the plain model in two rounds.

2.1.3.3 Adaptive corruptions

In the tamper-proof model, where the parties are assumed to have the capability of creating
tamper-proof hardware tokens the work of Goyal et al. [GIS+10] shows how to realize uncondi-
tional (and hence, adaptive) UC-security in the tamper-proof model assuming stateful tokens.
However, when we consider the weaker and more realistic model of stateless tokens, there is
no known construction of adaptively secure protocols. As mentioned above and under strong
assumptions, namely existence of (subexponentially-hard) indistinguishability obfuscation (iO)

16



of circuits, the works of [GP15, CGP15, DKR15] provided the first constant-round adaptively
secure protocols in the CRS model.13

As such, the best known adaptively secure protocols require strong assumptions and often
higher round complexity. Given the state of affairs, in this section, we are motivated by the
following natural question concerning adaptive security:

Can we construct adaptive GUC-secure constant-round protocols under standard
polynomial-time assumptions from minimal setup?

Recall that concurrent security cannot be achieved without assuming some form of trusted
setup [CF01, CKL03, Lin03a]. However, in many scenarios, it is impossible to agree on a
trusted entity. Specifically, protocols in the literature that rely on a trusted setup are rendered
completely insecure if the setup is compromised. In the absence of setup, concurrently secure
protocols have to rely on relaxed notions of security. The most popular notion in this line of
work is security with super-polynomial simulators (SPS) [Pas03, BS05a, PS04, LPV09] which is
a relaxation of the traditional simulation-based notion that allows the simulator to run in super-
polynomial time. All these constructions require super-polynomial security of the underlying
cryptographic primitives. Breakthrough work by Canetti, Lin and Pass showed how to obtain
SPS security from standard polynomial time assumptions [CLP10]. In the adaptive setting, the
works of [BS05a, DMRV13, Ven14] show how to obtain adaptive UC-secure protocols with SPS
under super-polynomial time assumptions. More recently, the work of [HV16] shows how to
obtain an O(λε) (for any constant 0 < ε < 1) round adaptive UC-secure protocol with SPS
under standard polynomial time assumptions.

In addition, motivated by designing practical protocols in the concurrent setting, another
approach taken by Canetti, Jain and Scafuro [CJS14] considers the Random Oracle Model
(ROM) of Bellare and Rogaway [BR93]. In order to provide strong compositional guarantees,
they introduce the Global ROM and show how to obtain UC-secure protocols in the static
setting. Their construction is based on the Decisional Diffie-Hellman assumption (DDH). In
this section, we are interested in addressing the following questions that remain open:

Can we construct UC-secure protocols in the Global Random Oracle Model from
minimal general assumptions?, and
Can we construct adaptive UC-secure protocols in the Global Random Oracle Model?

2.1.3.4 Results on adaptive security for arbitrary corruptions

We answer all our questions in the affirmative. Furthermore, all our results will be presented
in the stronger GUC-setting of [CDPW07] that provide strong(-er) compositional guarantees.
We will rely on the work [HPV16] where we model tokens for the GUC-setting. In order to
incorporate adaptive corruptions we will have to determine the precise capabilities of the adver-
sary when it can also corrupt the creator of the token post-execution and know the actual code
embedded in the token. The FgWRAP-functionality introduced in [HPV16] will be sufficient to
capture the adversary’s capabilities.

13The work of [DKR15] assumes only polynomially-hard indistinguishability obfuscation.
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Our first result shows how to construct constant-round adaptive GUC-secure protocols in
the tamper-proof hardware model assuming only stateless tokens and the existence of OWFs.
More precisely, we obtain the following theorem.

Theorem 2.1.9. [HPV17] Assuming the existence of OWFs, there exists a constant-round
protocol that GUC-securely realizes the commitment functionality in the global tamper-proof
model assuming stateless tokens against any adaptive, malicious adversary.

Next, we extend the ideas in this protocol to obtain an adaptive GUC-secure protocol for
the oblivious transfer functionality from OWFs.

Theorem 2.1.10. [HPV17] Assuming the existence of OWFs, there exists a constant-round
protocol that GUC-securely realizes the oblivious transfer functionality in the global tamper-
proof model assuming stateless tokens against any adaptive, malicious adversary.

Combining this protocol with the adaptive UC-secure protocol in the OT-hybrid of Ishai
et al. [IPS08], we can obtain as a corollary an adaptive GUC-secure protocol in the FgWRAP-
hybrid assuming only OWFs. However, this protocol will require O(df ) rounds where df is the
depth of the circuit computing the evaluated function f . Our main contribution in this section
is to reduce the round complexity and show how to realize any well-formed functionality in
O(1)-rounds independent of the complexity of the function. Below, we state this main theorem.

Theorem 2.1.11. [HPV17] Assuming the existence of OWFs, there exists a constant-round
protocol that GUC-securely realizes every (well-formed) two-party functionality in the global
tamper-proof model assuming stateless tokens against any adaptive, malicious adversary.

In order to achieve our results, at the heart of our construction we present a new technique
that equivocates Yao’s garbled circuits. On a high-level the idea is to use tokens to enable
evaluation of the garbled circuit in Yao’s garbling technique [Yao86]. That basic intuition here
is that we view the garbling technique as system of labels where evaluation can be performed by
“multiplexer” tokens (MPLX) where for each gate given labels corresponding to the inputs, the
MPLX picks the corresponding output label for a gate. This basic idea can be made to work in
the static setting to construct a secure computation protocol. However, in the adaptive setting
things get problematic. The simulator in the garbling technique relies on a “fake” garbled circuit
where only the “active keys” are correctly embedded in the garbled tables for the evaluator.14

In the adaptive setting, if the garbled circuit evaluator is corrupted at the beginning and the
generator is corrupted at the end of the execution the simulator needs to reveal the fake garbling
as a real garbling. This is not possible in the FgWRAP modelling of the tokens as the simulator
is not allowed to “program” the token after creation.

Instead, we solve this problem differently. We will not alter the honest generator’s strategy.
Instead, we modify the simulation strategy in order to equivocate the garble circuit as follows:

• We embed a key K to a symmetric encryption scheme in each gate token.
14Using the terminology of [LP09b], active keys are observed by the evaluator while evaluating the garbled

circuit, while inactive labels are the labels that remain hidden during the evaluation.
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• The token will be hardwired with three labels, `ω1 , `ω2 and `ω3 , which will be the supposed
active labels for this gate, and a random string r.

• On input `1, `2, the token will behave as follows: If `1 = `ω1 and `2 = `ω2 it will output
`ω3 . This corresponds to what the evaluator can obtain prior to corrupting the generator.

• If either `1 or `2 is different from the hardwired labels, it attempts to do the following. It
decrypts the label that is different using the key K to obtain a string z that it reads as
(x, y). The token then evaluates the circuit assuming the generator’s input is x and the
evaluator’s input is y to obtain the actual values in the wires ω1 and ω2 that are the inputs
to this gate, say b1 and b2. With this information, the token internally assigns the bit b1
to label `ω1 and b2 to label `ω2 and G(b1, b2) to `ω3 where G ∈ {AND,XOR} is the gate
function. Next, it outputs based on the following strategy:

1. If `1 = `ω1 and `2 6= `ω2 output `ω3 if G(b1, 1 − b2) = G(b1, b2), and output
Enc(K, (x, y); r) otherwise.

2. If `1 6= `ω1 and `2 = `ω2 output `ω3 if G(1 − b1, b2) = G(b1, b2), and output
Enc(K, (x, y); r) otherwise.

3. If `1 6= `ω1 and `2 6= `ω2 output `ω3 if G(1 − b1, 1 − b2) = G(b1, b2), and output
Enc(K, (x, y); r) otherwise.

In essence, this strategy figures out what bits the active labels should be associated with, and
outputs the labels correctly. Furthermore, the information required to figure out the association
is passed along. While this high-level idea allows to “equivocate” the circuit, we need the
encryption to satisfy some additional properties such as non-malleability and evasiveness. Note
that the above strategy followed by the simulator does provide a fake code to be embedded
in the token, but once the sender is corrupted post-execution the simulator reveals an honest
looking code to the adversary which does not include any information about the fake code e.g.,
the secret key K.

Last but not least, as a corollary to our techniques, we also present the first adaptively
secure protocols in the ROM with round complexity proportional to the depth of the circuit
implementing the functionality. Our protocols are secure in the global ROM [CJS14]. More
precisely, we obtain an adaptively secure UC-commitment scheme in the global ROM assuming
only OWFs. In comparison, the protocol of [CJS14] achieves only static security and relies on
the specific assumption of DDH.

2.1.3.5 Subsequent and future work

Relying on our technique of equivocating Yao’s garbled circuits based on stateless tokens, a
subsequent beautiful work by Canetti et al. [CPV16] shows how to equivocate garbled circuits
removing the reliance on tokens and thus construct the first two-round 2PC protocol secure
against any adaptive semi-honest corruption of both parties based on semi-honest adaptive OT
in the plain model. Therefore, their results also improve upon our work [GP15] which is based
on indistinguishability obfuscation. The work of [CPV16] also constructs constant round MPC
protocols tolerating adaptive malicious corruption of all parties (and UC-secure protocols in the
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CRS model). As mentioned in Section 2.1.2.2 we still leave open the question of two-round
adaptive MPC protocols in the CRS model from standard assumptions.

In the hardware token model, we leave open the question of constructing, two-round adaptive
MPC protocols in the static as well as adaptive settings.

2.2 Information-Theoretic Setting

IT secure cryptography provides unconditional security without the need for unproven complex-
ity assumptions. The techniques used in IT secure protocols tend to be computationally much
more efficient than the cryptographic machinery needed for computational security. There-
fore, IT secure protocols are attractive from a practical point of view, however they seem to
require a lot of interaction. The protocols behind these results require a number of communi-
cation rounds that is proportional to df where df is the depth of any circuit implementing the
evaluated functionality f . Moreover, these protocols offer communication complexity, which is
proportional to the size of the circuit. Whether we can have constant round protocols and/or
communication complexity much smaller than the size of the circuit and still be computation-
ally efficient (polynomial-time) in the circuit size of the evaluated function is a long-standing
open problem. Note also that if we give up on being efficient in the circuit size, then there
are unconditionally secure and constant round protocols for any function [IK00] (which will,
however, be very inefficient in general with respect to the computation). Moreover, there are
works that apply to special classes of circuits (e.g., constant-depth circuits [BI05]) or protocols
that require an exponential amount of computation [BFKR91, NN01] and exponential storage
complexity [IKM+13].

2.2.1 Gate-by-gate Design Pattern of Computation

The fact that existing IT secure protocols (which are efficient in the circuit size of the function)
have large round and communication complexity is a consequence of the fact that all such
protocols follow the same typical “gate-by-gate” design pattern: Initially all inputs are secret-
shared among the players. Then, for each gate in the circuit, where both its inputs have been
secret-shared, we execute a subprotocol that produces the output of the gate in a secret-shared
form. The protocol maintains as an invariant that for all gates that have been processed so far,
the secret-sharing of the output value is of the same form used for the inputs (so we can continue
processing gates) and is appropriately randomised such that one could open this sharing while
revealing only that output value. As a result, it is secure to reveal/open the final outputs from
the circuit.

For all known constructions which are efficient in the circuit size of the function, it is the
case that multiplication gates require communication to be processed (while addition/linear
gates usually do not). The number of rounds is at least the (multiplicative) depth of the circuit,
and the communication complexity is Ω(ns) for a circuit of size s (the size being measured as
the number of multiplication gates) in the worst case for privacy threshold t < n/3 and t < n/2
in the works of [DN07, BTH08] and [BFO12, GIP+14, GIP15], respectively. Note that protocols
that tolerate a sub-optimal number of corrupted parties (e.g., t < 0.49n) and are based on
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packed secret-sharing techniques can reduce the amortised cost of multiplications if they can be
parallelised [DIK+08, IPS09, DIK10, GIP15]. These techniques do not apply to all circuits, in
particular not to “tall and skinny” circuits whose multiplicative depth is comparable to their
size. In addition, they can at best save an O(n) factor in communication and computational
work. The situation is essentially the same for recent protocols that are designed for dishonest
majority in the preprocessing model [DPSZ12, NNOB12] (except that amortization based on
packed secret-sharing does not apply here due to the dishonest majority setting). See Section
3.2 for a detailed related work.

In this paper, we ask a very natural question for unconditionally secure protocols:

Is it really inherent that the typical gate-by-gate approach to secure computation
requires communication for each multiplication operation?

2.2.1.1 Lower bounds for gate-by-gate protocols

We answer the question in the affirmative. In particular, we show the following result.

Theorem 2.2.1. [DNPR16] (Informal). Any gate-by-gate n-party protocol securely realizing
any functionality f must communicate Ω(n) bits for every multiplication gate of the circuit
implementing the evaluated functionality f in in the honest majority setting as well as in the
dishonest majority setting with an initial preprocessed phase. 15

In the honest majority setting, we also show the following supplementary bounds:

• We show that one cannot obtain a communication complexity lower bound that also grows
with the size of the underlying field of the inputs of the evaluated function.

• For a constant number of players, amortization over several multiplication gates does not
save on the computational work, and – in a restricted setting – we show that this also
holds for communication.

All our lower bounds are met up to a constant factor by known protocols that follow the
typical gate-by-gate paradigm. Our results imply that a fundamentally new approach must be
found in order to improve the communication complexity of known protocols, such as [GMW87,
BOGW88, CCD88, DPSZ12], to name just a few.

2.2.1.2 Subsequent and future work

It is highly interesting to investigate whether our lower bounds hold for any protocol, departing
from the current gate-by-gate design of protocols in the literature. This question is long-standing
and seems challenging since answering in the affirmative rules out the possibility of constructing
something analogous to fully homomorphic encryption in the IT setting. On the other hand, if

15 The result holds in the dishonest majority if the target output secret-sharing scheme is of a certain type that
includes the simple additive secret-sharing scheme. If we put no restrictions on the target output secret-sharing
scheme, the results get a bit more complicated (see details in Section 7.4.2).
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it is indeed possible to construct constant round protocols in the IT setting, it is challenging to
investigate novel approaches towards this goal.

As mentioned above, giving up on being efficient in the circuit size, there are IT secure
and constant round protocols for any function [IK00], however they are extremely inefficient in
general with respect to the computation. That said, they are efficient only for NC1/ Logspace
L computations. Without loss of generality, all these protocols fall into the IT Randomized
Encoding (RE) model of computation. Note that there no known lower bounds on poly-size
IT randomized encodings. For example, it is not known whether we can have poly-size IT
randomized encoding for general poly-time functions (or efficient constant-round IT protocols).
It is highly interesting to obtain lower bounds or construct poly-size IT randomized encodings.

Last but not least, we mention a subsequent work on secure computation over large in-
puts for specific functionalities. Secure computation on big data calls for MPC protocols that
have sub-linear communication complexity in the input length. Quite unexpectedly, the works
of [AMP10, BS05b, SV15] have shown that in several natural instances of secure computation
on big data, such as computing the median and several combinatorial optimization problems,
one can enjoy the best of both worlds: sub-linear communication complexity and low concrete
computational overhead. In a recent work [BIP17], we put forward a framework for separating
“practical” sublinear communication protocols from “impractical” ones. We show that while
the previous protocols of [AMP10, BS05b, SV15] are indeed classified as being “practical” in
this framework, this is provably not the case for some natural variations of the tasks realized by
these protocols. For instance, while the median functionality enjoys sub-linear communication
complexity [AMP10, SV15], we show that a variant of the median functionality – in which only
one party learns the function output – requires linear communication complexity. This suggests
that practical sub-linear cryptography is more sensitive to the precise formulation of the task at
hand than it may seem.

2.2.2 Communication Complexity of Semi-honest vs. Malicious
Gate-by-gate Protocols

The difficulty of designing MPC protocols depends largely on the power of the adversary. An
important distinction is between MPC protocols that offer security against passive (or semi-
honest) adversaries, who follow the protocol’s specification but try to learn information from
messages they receive, and security against active (or malicious) adversaries, who are allowed to
deviate from the protocol’s specification in arbitrary ways. A central problem in cryptography
is that of converting protocols that offer security against passive (or semi-honest) adversaries
into ones that offer security against active (or malicious) adversaries. This problem has been
the topic of a large body of work in the area of secure MPC. Despite these efforts, there are still
big efficiency gaps between the best protocols in these two settings.

A common paradigm for designing actively secure MPC protocols is to start with a
passively secure protocol and then convert it into an actively secure protocol. Some rele-
vant techniques include general-purpose “GMW-style” compilers that employ zero-knowledge
proofs [GMW87, CLOS02], ad-hoc protocols for verifying the correct execution of subproto-
cols [BOGW88, CCD88], cut-and-choose techniques [LP07, LP11b], LEGO style cut-and-choose
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[NO09, FJN+13, FJNT15], or “MPC in the head” [IKOS07, IPS08]. These techniques typically
involve a significant overhead.

A different technique, which in some cases provides better results, was recently proposed
independently by Genkin et al. [GIP+14] and Ikarashi et al. [IKHC14]. In particular, [GIP+14]
suggested a new paradigm for efficiently transforming passive-secure MPC protocols into active-
secure ones. The authors observe that in several known passively secure MPC protocols for
evaluating arithmetic circuits, the effect of any arbitrary active attack on the protocol is limited
to an additive attack on the evaluated circuit wires. That is, everything that an adversary can
achieve by attacking the real protocol for evaluating C he could have also achieved by attacking
directly the evaluated circuit C in which he can blindly add a field element of his choice to each
wire. We refer to such protocols as additively corruptible protocols. To protect against such
attacks, the original circuit is replaced by a so-called AMD circuit C – a randomized circuit
which is functionally equivalent to C but additionally offers resistance against additive attacks
with constant multiplicative overhead to the size of C. 16

Our motivating observation is that in the most efficient known IT MPC protocols that
tolerate a slightly sub-optimal number of corrupted parties (e.g., t < 0.49n) based on packed
secret sharing, it is not the case that general attacks reduce to additive attacks. As mentioned
above, these protocols replace the standard secret sharing used in optimally resilient protocols by
a more efficient packed secret sharing [FY92] technique, and as a result provide better asymptotic
efficiency. We observe that the ideal attack corresponding to an active adversary attacking these
protocols can include a limited form of linear combinations that combine multiple wire values
of the evaluated circuit. In Section 7.5 we provide a simple example to illustrate the necessity
of extending the attack model to linear. As a result, the techniques of [GIP+14, IKHC14] do
not apply to such protocols. We refer to such protocols as linearly corruptible protocols.

A second disadvantage of the techniques of [GIP+14, IKHC14] is that they are tailored to
specific protocols. In particular, the part of the analysis that maps general attacks to additive
attacks is done in an ad-hoc way per protocol without a unified framework that captures all
additively corruptible protocols.

In addition, we point out that the concrete efficiency of DIK-style protocols [DIK10,
BELO14, IPS09] based on packed secret sharing involves prohibitively large constants when ap-
plied with near-optimal security threshold. Indeed, the threshold obtained directly by [DIK10]
is t < n/4 which is quite far from the optimal bound of n/2. To improve on this threshold,
a general technique due to Bracha [Bra87] is applied to boost the resilience. The basic idea is
that a constant-size committee runs an optimally resilient protocol to emulate the role of each
server in the low-threshold protocol. While this technique can be implemented with a constant
multiplicative overhead, this constant is very large. See Table 3.1 for a detailed comparison of
IT MPC protocols.

The above state of affairs leads to the following general question.

Can we achieve malicious IT MPC protocols based on packed secret sharing that
match the communication complexity of their semi-honest variants?

16The work of [IKHC14] does not explicitly construct AMD circuits, but implicitly relies on a simple construc-
tion of AMD circuits that tolerates a restricted class of additive attacks which suffices in some cases.
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2.2.2.1 Results for malicious gate-by-gate protocols

We answer the above question in the affirmative and show how to extend the AMD circuit
methodology to so-called secure SIMD circuits 17, which offer protection against the more general
linear class of attacks 18 and extend the model considered in [GIP+14] from additive attacks to
general algebraic attacks. In a nutshell we obtain the following general results [GIP15]:

• We construct SIMD circuits secure against linear attacks with constant multiplicative over-
head to the size of the original circuit for arithmetic circuits.

• We apply secure SIMD circuits to obtain several asymptotic and concrete efficiency im-
provements over the current state of the art. In particular, we improve the additive
per-layer overhead of the current best protocols from O(n2) to O(n). Table 3.1 shows
the achieved overheads. In a nutshell, in this work we close the efficiency gap between
passively secure versus actively secure IT MPC protocols based on packed secret sharing.

• We obtain the first protocols based on packed secret sharing that “natively” achieve near-
optimal security without incurring the high concrete cost of Bracha’s committee-based
security amplification method.

• Our analysis is based on a new modular framework for proving reductions from general
attacks to algebraic attacks. This framework allows us to reprove previous results in a
conceptually simpler and more unified way, as well as obtain our new results.

Maliciously Secure MPC Protocols from SIMD Circuits. In a nutshell, our approach for
constructing actively secure MPC protocols is as follows. We present a general framework and
prove that any passively secure protocol π, satisfying the framework’s requirements is indeed
additively or linearly corruptible depending on whether π uses packed secret sharing or not.
Next, in order to transform any passively secure protocol for evaluating a circuit C, which
meets the framework’s requirement, into an actively secure protocol, we apply the same passive
protocol on a different circuit C which is essentially the secure version of C (either additive-
attack secure or linear-attack secure, based on whether C is an SIMD circuit). We thus transfer
the responsibility of handling the consequences resulting from an active adversary deviating
from the protocol, to C. Since any deviations made by an active adversary correspond to an
additive (or linear, for the case of SIMDcircuit) attack on C, C is able to detect these deviations
and abort the computation if necessary.

Our framework for proving that a passively secure protocol π is in fact additively or linearly
corruptible, consists of three steps. We point out that while these steps modify the original
protocols, are only a thought-experiment used to prove the main claim about the effect of an

17An SIMD circuit is a generalization of standard arithmetic circuits, composed by `-gates which get as input two
wire bundles of size ` and output a wire output bundle of size ` obtained by performing ` point-wise multiplications,
additions and subtractions in parallel. Thus, SIMD circuits simultaneously evaluate ` copies of the same arithmetic
circuit, on different inputs.

18A linear attack on an SIMD circuit changes the computation of a multiplication `-gate by adding to each
wire in the gate’s output bundle a linear function φ : F2` → F` of all the wires in the gate’s two input bundles.
We note that for the case where ` = 1 linear attacks are equivalent to additive attacks.
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active adversary on the underlying circuit that parties try to evaluate. Once a passively secure
protocol is proven to satisfy the framework’s requirements, the only real modification required
to the protocol in order to transform it to an actively secure protocol, is to execute it on an
additive-attack or linear-attack secure circuit.

Step 1: Protocol randomization. In order to convert an active adversary controlling a set
of parties T to an additive attack, we first transform a protocol π to another protocol πT such
that all the messages mT ,T sent by the parties in T (the honest parties) to the parties in T
(except during the last communication round) syntactically depend only on the randomness of
π. In particular, we require that mT ,T does not depend on the inputs xT of the parties in T or
on the messages that the parties in T receive during the protocol. In such case we say that πT
is T -randomized.

We first show that for many natural MPC protocols, for any set of parties T , such that |T |
is below the privacy threshold of a protocol, it is possible to construct a T -randomized protocol,
πT , such that any deviation from π made by an active adversary has the same effect on the joint
distribution of its view together with the output of the honest parties, as performing the same
deviation from πT . Thus we proved that anything that the adversary achieves attacking π, he
can also achieve attacking πT . In this case we say that πT is T -equivalent to π.

Notice that T -randomization requirement is stronger than privacy. This is since T -
randomization requires that the values of mT ,T do not depend on the inputs of the parties
in T or on messages that parties in T received during the protocol as opposed to privacy which
makes a similar requirement on the distribution of mT ,T . See Step 2 for the necessity of the
T -randomization requirement.

In the the full version we present the T -randomized and T -equivalent versions GMWT ,
DNT and DIKT of the passively secure GMW, DN and DIK [GMW87, DN07, DIK10] protocols,
respectively. In addition, we also prove that these protocols are T -equivalent to their non-
randomized versions.

Step 2: From general adversaries to additive attacks. In this step we reduce any general
adversary controlling a set of parties T and attacking a T -randomized protocol π, to an additive
attack on the protocol circuit Cπ. The circuit Cπ is a direct implementation of the arithmetic
operations performed by π. Cπ gets as input the inputs x of the parties in π as well the
randomness r used in π. It then evaluates π on inputs (x; r) and outputs the outputs of all the
parties following an execution of π(x; r).

Since π is T -randomized we can completely simulate from the randomness r for π and from
the inputs xT of the parties in T , the view ũT (except during the last communication round) of
the parties in T . Next, we determine the additive attack on Cπ corresponding to an adversary
Adv controlling the parties in T as follows. We first honestly simulate the parties in T on their
view ũT and obtain the messages m̃T ,T sent by the parties in T to the parties in T during an
honest execution of π. Next, we invoke Adv on the view ũT and obtain the messages m̃Adv

T ,T sent
by the parties in T to the parties in T during a real execution of π in the presence of Adv.
Finally we determine the additive attack A on Cπ by computing A← m̃Adv

T ,T − m̃T ,T .
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Since π is T -randomized, it is the case that inside Cπ under the additive attack A it holds
that m̃Adv

T ,T = m̃T ,T + A, for any input xT of the parties in T as well as for any messages
that these parties receive during π. We thus correctly simulate, inside Cπ, the effect of Adv on
π. Notice that this is not necessary true in case π is T -private since for any selection of the
randomness r, the specific values of the messages sent by the parties in T to Adv might depend
on their inputs xT to π. Since xT is not known to the simulator, it cannot generate the correct
view ũT required in order to compute m̃Adv

T ,T and m̃T ,T .
In the full version we prove that A indeed correctly simulates in Cπ any deviation made by

Adv during a real execution of π. Combining the results of this step together with the results
of the previous step, we obtain that any arbitrary behavior of an active adversary, controlling a
set of parties T and attacking the passively secure GMW,DN and DIK protocols, has the same
effect as mounting additive attacks on the circuits CGMWT ,CDNT and CDIKT , respectively.

Step 3: Translate attacks on Cπ to attacks on C. We translate additive attacks mounted
on Cπ to equivalent linear or additive attack on C. In the full version we present the notion of
homomorphic circuits and prove that if a circuit C′ is homomorphic to a circuit C then for any
additive attack A′ on C′ there exists an equivalent additive attack A on C such that CA(x) =
C′A′(x), for all x. Next, extending the notion of circuit homomorphism to SIMD circuits, in
the full version we define the notion of `-homomorphic circuits and prove that if a circuit C′
is `-homomorphic to an SIMD circuit C, then for any additive attack A′ on C′ there exists an
equivalent linear attack on C such that CL(x) = C′A′(x) for all x.

In the full version of [GIP15] we apply the above transformations on the arithmetic version
of the passively secure GMW protocol, proving that it is additively corruptible. Next, we apply
the above transformations to the passively secure DN and DIK protocols, proving that these
protocols are additively and linear corruptible, respectively. In the full version, we also present
our techniques for additive-attack and and linear-attack security for securing circuits against
additive and linear attacks.

2.2.2.2 Subsequent and future work

Our work [GIP15] closes the communication efficiency gap between passively secure versus ac-
tively secure IT MPC gate-by-gate protocols by constructing SIMD circuits secure against linear
attacks with constant multiplicative overhead to the size of the original evaluated circuit for
arithmetic circuits. We leave open the question of constructing secure AMD circuits with con-
stant multiplicative overhead to the size of the original evaluated circuit for boolean circuit.
Such a result would close the communication efficiency gap also for protocols based on RE
and Yao’s garbled circuits even in the computational setting. Current constructions require
polylogarithmic (in the security parameter) overhead [IKL+13].

A recent work by [GIW16] presented AMD circuits secure against additive attacks for boolean
circuits but with polylogarithmic (in the security parameter) multiplicative overhead to the size
of the original circuit.
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2.3 Secure RAM Computation

The tremendous growth of cloud computing and outsourced computation has made the protec-
tion of computations executed over untrusted agents a central focus in cryptography. Cryp-
tographic protocols that address these issues have traditionally been developed in the circuit
model of computation. However, a lot of recent work focuses on improving the overhead of
such protocols when applied to realistic computations that are (as most programs are) designed
for machines with RAM, departing from the circuit model. A major source of inefficiency that
arises in the context of secure RAM computation is that of converting a program into a cir-
cuit. There are a lot of works on secure cloud computing but most notably Garbled RAM
(GRAM) schemes [LO13b], the RAM analogue of Yao’s garbled circuits, overcome the above
considerations by garbling a RAM program directly without converting it into a circuit.

Traditional cryptographic protocols for secure “big data” computations require communica-
tion complexity and computational overhead that scale with the size of the input dataset. Works
on oblivious RAM [Gol87, Ost90], fully-homomorphic encryption (FHE) [Gen09, BV11b, BV11a,
GSW13] and secure RAM computation [OS97, GKK+12, LO13b, LO13a, GHL+14, WHC+14,
GLOS15, GLO15, GGMP16] offer cryptographic solutions in an effort to reduce these overheads.
Non-interactive protocols based on FHE generally have minimal communication complexity but
incur a prohibitively large computational overhead. However, protocols for the RAM model
generally have minimal computational overhead, but lack in terms of communication efficiency,
especially in the multi-party setting. Is it possible to achieve the best of both worlds? In our
work [CDG+17] we introduce the new notion of Laconic Oblivious transfer that helps to strike
a balance between two seeming opposing goals.

Results in Secure RAM computation. In this section we only mention our results in
[CDG+17]. In particular, we introduce a novel technique for secure computation over large in-
puts. Based on the Decisional Diffie-Hellman (DDH) assumption, we provide a new Oblivious
Transfer protocol with a laconic receiver. In particular, the laconic OT allows a receiver to com-
mit to a large database input D (of length m) via a short message. Subsequently, a single short
message by a sender allows the receiver to learn sDi , where s0, s1 and i ∈ [m] are dynamically
chosen by the sender. All prior constructions of OT required the receiver’s message to grow with
m. At the technical core of this construction is a novel use of somewhere statistically binding
hashing in conjunction with hash proof systems.

Such an OT is suited to secure computation over large data. More specifically, we show
applications of laconic OT to non-interactive secure computation and homomorphic encryption
for RAM programs.

• Non-Interactive Secure Computation à la [IKO+11] on Large Inputs: Can a receiver pub-
lish a (small) encoding of her large confidential database D so that any sender, holding a
secret input x, can reveal the output f(x,D) to the receiver by sending her a single mes-
sage? Using laconic OT, we present the first solution to this problem. In our construction,
the size of receiver’s published message is independent of the size of her database D.
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Furthermore, in case f can be computed using a RAM program P , then the size of the
sender’s message (and computational cost of both the sender and the receiver) in our
construction grows only with the running time of the RAM program. In this case, the
receiver R learns nothing more than the output PD(x) and the locations in D touched
during the computation.

• Multi-Hop Homomorphic Encryption à la [GHV10] for RAM programs: Consider a party
Alice with a private input x and a sequence of clients Q1, Q2, . . . with private databases
D1, D2, . . ., respectively. The clients ship encrypted versions of their private databases to
Alice. Alice encrypts her private input x under her public key and sends the obtained
ciphertext to Q1. Next, clients Q1, Q2, . . . in an arbitrary order compute arbitrary RAM
programs on the provided ciphertext, while accessing their private databases. Finally, Alice
wants to be able to decrypt the evaluated ciphertext using her secret key, while preserving
the persistent nature of the database that gets dynamically updated as multiple programs
are sequentially executed. Note that computation itself happens at decryption time, and
that is when Alice uses the encrypted versions of the clients databases. Using laconic
OT, we obtain a construction of such a homomorphic encryption scheme for which the
computational costs and the size of the ciphertexts grow only with the running time of the
programs computed by the clients.

2.4 Roadmap

In Chapter 3 we provide a detailed survey on the communication complexity of secure computa-
tion works in the literature in the computational setting as well as in the information-theoretic
setting.

In Part II we present our results in the computational setting. More specifically, secure
computation has been achieved under various models including no trusted setup (i.e. the plain
model), trusted setup (i.e. the CRS model) and decentralized setup (i.e. the tamper-proof
hardware model). In Chapter 4 we present our results [GMPP16] in the plain model which
are updated to include the robustness requirement for the non-malleable commitments in order
to achieve our two-party protocols. Due to space constraints we refer to the full version of
[GMPP16] for our multi-party protocols. In Chapter 5 we present our two-party protocols in
the tamper-proof hardware model. More specifically, we present our results as stated in [HPV16]
with minor modifications for the static setting. Due to space constraints we refer to the full
version of [HPV16] for our results in the multi-party setting and to [HPV17] for our results in
the adaptive setting. In Chapter 6 we present our adaptively secure multi-party protocols in
the CRS model as stated in our work in [GP15] with minor modifications. Moreover, in Section
6.2 we present our general construction of equivocal FHE as stated in [DPR16] with minor
modifications. For our multi-party computation protocols secure against all-but-one corruptions
we refer to the full version of [DPR16].

In Part III we present our lower bounds in the information-theoretic setting. In partic-
ular, we present our results as presented in [DNPR16] with minor modifications and due to
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space constraints we refer to [GIP15] for our constructions of information-theoretic multi-party
computation protocols.
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Chapter 3

Related Work
3.1 Computational Setting

The round complexity of secure computation has a rich and long history. We mention the
results in the computational setting (that are most relevant to this thesis) in the plain model,
CRS model and tamper-proof hardware model. Note that our works in [GMPP16, HPV16,
GP15, DPR16, DNPR16] provide related work sections however we expand these sections and
provide a detailed overview of the state-of-the-art in this thesis.

3.1.1 Related Work in the Plain Model

For the computational setting and the special case of two party computation, the semi-honest
secure protocol of Yao [Yao82, Yao86, LP11b] consists of only three rounds (see Section 6.1.3).
An alternative approach using randomized polynomials was also given by [IK00, AIK05]. For
malicious security 1, the first constant round protocol based on GMW was presented by Lin-
dell [Lin01]. 2 Ishai, Prabhakaran, and Sahai [IPS08] presented a different approach which also
results in a constant round protocol.

The problem of the exact round complexity of two party computation was studied in the
beautiful work of Katz and Ostrovsky [KO04] who provided a 5 round protocol for computing any
two-party functionality. They also ruled out the possibility of a four round protocol for coin-
flipping, thus completely resolving the case of two party. Recently Ostrovsky, Richelson and
Scafuro [ORS15] constructed a different 5-round protocol for the general two-party computation
by only relying on black-box usage of the underlying trapdoor one-way permutation.

The standard setting for two-party computation does not consider simultaneous message
exchange channels, and hence the negative results for the two-party setting do not apply to the
multi-party setting where simultaneous message exchange channels are standard. Prior to our
work [GMPP16], the case of the two-party setting in the presence of a simultaneous message
exchange channel was not explored in the context of the exact round complexity of secure
computation.

For the multi-party setting, the exact round complexity has remained open for a long time.
The work of [BMR90] gave the first constant-round non black-box protocol for honest majority
(improved by the black-box protocols of [DI05, DI06]). Katz, Ostrovsky, and Smith [KOS03],
adapted techniques from [DDN91b, Bar02, BMR90, CLOS02] to construct the first asymp-
totically round-optimal protocols for any multi-party functionality for the dishonest majority
case based on sub-exponential hardness assumptions ( [KOS03] achieves logarithmic round-
complexity based on polynomial-time assumptions). More specifically, apart from enhanced

1From here on, unless specified otherwise, we are always in the malicious setting by default.
2Versions of [LP07, LP11b, Lin13, HKE13] in the plain model construct two-party constant round malicious

protocols based on cut-and-choose techniques.
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trapdoor permutations their protocol relies on the assumption of sub-exponentially secure dense
cryptosystems as well as sub-exponentially secure collision resistant hash functions. Pass [Pas04]
constructed a constant-round bounded-concurrent protocol based on standard polynomial-time
assumptions, i.e. enhanced trapdoor permutations and collision resistant hash functions. The
constant-round protocols of [KOS03, Pas04] relied on non-black-box use of the adversary’s algo-
rithm [Bar01]. However, constant-round protocols making black-box use of the adversary were
constructed by [PPV08, LP11a, Goy11], and making black-box use of one-way functions by Wee
in ω(1) rounds [Wee10] and by Goyal in constant rounds [Goy11]. Furthermore, based on the
non-malleable commitment scheme of [Goy11], the work of [GLOV12] constructs a constant-
round multi-party coin-tossing protocol. Lin, Pass, and Venkitasubramanian[LPV09] presented
a unified approach to construct UC-secure protocols from non-malleable commitments. However,
as mentioned earlier, none of the aforementioned works focused on the exact round complexity
of secure computation based on the round-complexity of non-malleable commitments.

Our recent work [GMPP16] examined the simultaneous-message model (in both two-party
and multi-party settings), and proved a lower bound of four rounds in that model for general
functionalities. More precisely, we show that in the simultaneous message exchange model, two-
party coin-flipping (of ω(log k) bits) requires at least four rounds (where both parties receive
the output). On the positive side, starting from any k-round parallel and (3-robust) non-
malleable commitment we show how to obtain (1) a max(4, t + 1)-round protocol for arbitrary
functionalities in the two-party setting, and (2) a max(4, t + 1)-round protocol for the specific
coin-tossing functionality in the multi-party setting.

3.1.2 Related Work in the CRS Model

Static Corruptions. In the CRS model, much effort has already been made in providing
round efficient UC secure protocols. The works of Jarecki and Shmatikov [JS07] and Horvitz
and Katz [HK07] present two-party protocols where the former is constant-round and the latter
is two-round, which is the optimal. Asharov et al. [AJL+12] first show a three-round multi-party
computation protocol in the CRS model and a two-round multi-party computation protocol in
the reusable public-key infrastructure setup model based on LWE. The authors in [AJL+12]
construct threshold FHE schemes based on the FHE schemes of [BV11a, BGV12]. The works
of [BD10, MSS11] also present threshold FHE schemes but their protocols required more than
two rounds of interaction. The work of Garg et al. [GGHR14] gives a two-round multi-party
protocol under strong assumptions, namely, the existence of indistinguishability obfuscation for
polynomial circuits and statistically-sound NIZKs.

More recently, the work of Mukherjee and Wichs [MW16], and its extensions [BP16, PS16],
based on multi-key FHE [LTV12, CM15], shows how to obtain optimal 2-round constructions
based on LWE and NIZKs in the CRS model. 3

An alternative approach using randomized polynomials [AIK05] combined with [GMW87]
yields a four-round multi-party computation protocol based on the assumption of semi-honest
OT. Furthermore, we can generically compile any semi-honest protocol into one that is (UC)

3The protocol of [MW16] only assumes a common random string (as opposed to a common reference string
which is sampled form a specific distribution.
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secure against malicious adversaries using coin-tossing and (UC) NIZKs [DDO+01], at the cost
of adding two extra rounds for the coin-tossing.

Note that there is a large body of work that constructs secure computation protocols in
the preprocessing model which require an initial offline computation phase independent of the
inputs of the evaluated function. In particular, the works of [FH96, JJ00, CDN01, DN03,
BDOZ11, DPSZ12, NNOB12, DZ13, DKL+13] present multi-party computation protocols with
round complexity proportional to the multiplicative depth of the evaluated circuit and the works
of [LR14, LR15, NO16] present constant round protocols. Recent works tailored to the special
case of two parties are presented in the works of [LR14, LR15, NO16] in the preprocessing model.

Adaptive Corruptions. Unconditionally secure protocols such as [BOGW88, CCD88] are
typically adaptively secure. But these protocols are not constant round, and it is a major open
problem if it is even possible to have unconditional security and constant number of rounds for
secure computation of any function, see [DNPR16] for a detailed discussion and Section 2.2.

Recall that based on computational assumptions, we can achieve constant round protocols,
with the first work of Yao’s garbled circuits for two players, but on the other hand this does
not give us adaptive security. Another class of protocols based on FHE also naturally leads to
constant round protocols, where we can tolerate that a majority of players is corrupted. Here
we also get low communication complexity, that depends only on the length of the inputs and
outputs of the evaluated function. But again, these protocols achieve only static security as
mentioned in the previous Section (see for instance [Gen09, AJL+12, MW16]).

We can in fact get adaptive security in the computational setting, as shown in [CFGN96] by
introducing the notion of Non-Commiting Encryption (NCE). Moreover, in [DN03], adaptive se-
curity was obtained as well, but much more efficiently using additively homomorphic encryption.
However, neither [CFGN96] nor [DN03] run in a constant number of rounds.

If we assume honest majority, we can get both constant round and adaptive security but the
communication complexity will be propositional to the size of the evaluated circuit. This was
shown in several papers [DI05, DI06, DIK+08, IPS08]. The idea here is to use an unconditionally
secure protocol to compute, for instance, a Yao garbled circuit, that is then used to compute
the desired function in a constant number of rounds. Since the computation leading to the Yao
circuit is easy to parallelise, this can be constant round as well and we inherit adaptive security
from the unconditionally secure preprocessing. In the dishonest majority setting, the work of
[DPR16] shows an adaptively secure 3-round protocol based on LWE. The result of [KTZ13]
suggests that the result of [DPR16] secure against n− 1 corruptions out of the n parties is the
best we can achieve based only on FHE.

Security against arbitrary corruptions. For the setting where all parties can be corrupted
the round complexity of all known adaptively secure protocols secure against n corruptions
grows (see, e.g. [CLOS02, GS12, DMRV13, Ven14]) linearly in the depth of the evaluated
circuit. Recent independent works [GP15, CGP15, DKR15, CP16], have been shown that MPC
protocols with security against n corruptions in a constant number of rounds can be achieved
using indistinguishability obfuscation [GGH+13b]. The work of [GP15] achieves two rounds
of interactions which is the optimal. The work of Garg and Sahai [GS12] shows that a linear
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number of rounds is required (in the multi-party setting) in the plain model with black-box
simulation. However, this impossibility result does not apply here since the results mentioned
above require a CRS.
Subsequent work. Relying on the technique of equivocating Yao’s garbled circuits based on
stateless tokens in the work of [HPV17] (see Section 2.1.3.3), a subsequent beautiful work by
Canetti et al. [CPV16] shows how to equivocate garbled circuits removing the reliance on tokens
in [HPV17] and thus construct the first two-round two-party protocol secure against any adaptive
semi-honest corruption of both parties based on semi-honest adaptive OT in the plain model.
[CPV16] also construct constant round multi-party computation protocols tolerating adaptive
malicious corruption of all parties (and UC-secure protocols in the CRS model).

3.1.3 Related Work in the Tamper-Proof Hardware Model

Static Corruptions. The work of Goldreich and Ostrovsky [GO96] first considered the use
of hardware tokens in the context of software obfuscation via Oblivious RAMs. A decade later,
Katz in [Kat07] demonstrated the feasibility of achieving UC-secure protocols for arbitrary
functionalities assuming tamper-proof tokens under static corruptions. In his formulation, the
parties can create a token that computes arbitrary functionalities such that any adversary that
is given access to the token can only observe the input/output behaviour of the token. In the
UC framework, Katz described an ideal functionality FWRAP that captures this model. Note
that tokens can either be stateful or stateless, depending on whether the tokens are allowed
to maintain some state between invocations (where stateless tokens are easier to implement).
Following [Kat07], Goldwasser et al. [GKR08] investigated the use of one-time programs, that
allow a semi-honest sender to create simple stateful tokens where a potentially malicious receiver
executes them exactly once (or a bounded number of times). Their work considered concrete
applications such as zero-knowledge proofs and focused on minimizing the number of required
tokens. Our work [HPV16] shows that the standard (and most popular) formalization of the
tamper proof hardware tokens (namely the FWRAP-functionality due to Katz [Kat07],) does not
fully capture the power of the adversary in a concurrent setting. In particular, the formulation
in [Kat07] does not capture a man-in-the-middle attack where an adversary can transfer the
tokens received from one session to another. In [HPV16], a new formulation of tamper-proof
hardware in the Global Universal Composable (GUC) framework was introduced that addressed
these shortcomings.

The construction of [Kat07] relied on stateful tokens based on the DDH assumption, and was
later improved by Lin et al. [LPV09] to rely on the minimal assumption of one-way functions.
Goyal et al. [GIS+10] resolved the power of stateful tokens and showed how to obtain uncondi-
tionally secure protocols using stateful tokens. The work of Chandran, Goyal and Sahai [CGS08]
was the first to achieve UC-security using only stateless tokens. Choi et al. [CKS+14] gave
the first constant-round UC-secure protocols using stateless tokens assuming collision-resistant
hash-functions. The works of [Nil15, MMN16] consider a GUC-like formulation of the tokens
for the two-party setting where the parties have fixed roles. The focus in [Nil15, MMN16] was
to obtain a formulation that accommodates reusability of a single token for several independent
protocols in the UC-setting for the specific two-party case. In contrast to the work in [HPV16] ,
[Nil15, MMN16] does not explicitly model or discuss adversarial transferability of tokens. Finally,
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our work in [HPV16] resolved the question of identifying the minimal assumptions to construct
UC-secure protocols under static corruptions with stateless tokens, namely, we show how to real-
ize constant-round two-party and multi-party UC-secure protocols assuming only the existence of
one-way functions. Besides these works, there have been several works in the tamper-proof token
model [CGS08, MS08, LPV09, GIS+10, DKM11, DMRV13, DMMN13, DKMN15b, CKS+14])
addressing various efficiency parameters.

Adaptive Corruptions. In the adaptive setting, the works of [DMRV13, Ven14] and [GIS+10]
construct adaptive UC-secure protocols in the tamper-proof model using stateful tokens with
round complexity proportional to the depth of the evaluated circuit. While the works of
[DMRV13, Ven14] rely on simulatable public-key encryption schemes, Goyal et al. in [GIS+10]
provide unconditionally secure protocols (which in particular imply adaptive UC-security). The
first work to address the feasibility of adaptive security using stateless tokens is our work [HPV17]
which presents the first constant-round two-party protocol secure against malicious and adap-
tive adversaries who can adaptively corrupt all parties using stateless tokens. Our two-party
adaptive protocol is based only on OWFs.

3.2 Information-Theoretic Setting

For all known constructions which are efficient in the circuit size of the evaluated function, it is
the case that multiplication gates require communication to be processed (while addition/linear
gates usually do not). That said, the number of rounds is at least the (multiplicative) depth
of the circuit, and the communication complexity is proportional to the size of the evaluated
circuit [GMW87, BOGW88, FY92, DN07, BTH08, IPS09, DIK10, BFO12, GIP+14, GIP15] (see
Table 3.1 for a detailed comparison on the communication complexity of IT MPC protocols).
Whether this is inherent is an open problem. However, our work [DNPR16] shows that it is
indeed inherent for protocols that follow the typical “gate-by-gate” design pattern, followed by
the current protocols in the literature which are efficient in the evaluated function. In particular,
[DNPR16] shows that any protocol that follows the typical gate-by-gate design pattern of secure
computation must have communication complexity dependant on the circuit size and number
of rounds dependant on the depth of the evaluated circuit (even in the dishonest majority
setting with preprocessing). More specifically, the message complexity per multiplication gate
must be equal to the privacy threshold. Furthermore, for arithmetic circuits over large fields
one might wonder whether the communication must grow with the field size. Surprisingly, as
shown in [DNPR16], each message can be independent of the field size of the inputs. The
impossibility result of [DNPR16] implies that a fundamental new approach must be found in
order to construct protocols, that are efficient in the circuit size of the evaluated function, with
reduced communication complexity and constant round complexity that beat the complexities
of [GMW87, BOGW88, CCD88, DPSZ12] etc.

We stress that there is a special case of IT protocols that enjoys constant round complexity.
More specifically, the work of [GIKR02] constructs a two-round IT protocol which is efficient in
the circuit size only if a single party holds the entire input.
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Giving up on being efficient in the circuit size, there are IT secure and constant round
protocols for any function [IK00], however they are extremely inefficient in general with respect
to the computation. That said, they are efficient only for NC1/ Logspace L computations.
Without loss of generality, all these protocols fall into the IT Randomized Encoding (RE) model
of computation. In particular, RE can be constructed for any language in L-parity/poly, and also
for some specific languages like quadratic residuosity (see [App14]). Note that there no known
lower bounds on poly-size IT randomized encodings. For example, it is not known whether we
can have poly-size IT randomized encoding for general poly-time functions (or efficient constant-
round IT protocols). It is highly interesting to obtain lower bounds or construct poly-size IT
randomized encodings.

Last but not least, there are two-round constructions in the computational setting (assuming
only OWFs) that consider only a single corrupted party such as the work of [IKP10] for n >= 5
where n denotes the number of parties. The work of [IKKP15] complement the work of [IKP10]
by presenting results for n = 3 and n = 4. However, lifting these protocols to the IT setting
yield protocols that are only efficient in the branching program size of the evaluated function.

Comparison of [DNPR16] to related work. There is a lot of prior work on lower bounding
communication in interactive protocols, see for instance [Kus92, FY92, CK93, FKN94, KM97,
KR94, BSPV99, GR03] (see [DPP14] for an overview of these results). They typically provide
lower bounds for very specific functions such as modular addition, and are not applicable to
our situation. Probably the most relevant previous work is [DPP14]. Their model does not
match ours, as they consider three parties where only two have input and only the third party
gets output. Hence we cannot use their results directly, but it is instructive to consider their
techniques as it shows why our problem is more tricky than it may seem at first. One important
idea used in [DPP14] is to make a “cut”, i.e., one considers a (small) subset C of the parties and
then argue that either the communication between C and the rest of the world must be large
enough to determine their inputs, since otherwise other players could not compute the output;
or that C must receive information of sufficient size to be able to compute its own outputs.

It turns out that these ideas are not sufficient for us: recall that we start from a situation
where players already have shares of the input values a, b. Now, if C is large enough to be qualified
in the input secret sharing scheme, then C already has information enough to determine a, b (and
for some secret sharing schemes even the shares of all players). So C can in principle compute
correct shares of c = ab by itself without communicating with anyone. On the other hand, if
C is unqualified, then the complement of C is typically qualified, and therefore does not need
information from C to compute output. But one might think that C needs to receive information
to determine its output, in particular, the output shares must be properly coordinated to form
a consistent sharing of c. Remember, however, that players already have properly coordinated
shares of the inputs, and they might be able to use those to form a correct output sharing
while communicating less. Indeed, this is what happens for addition gates, where there is no
communication, players just add their shares locally.

It follows that the idea of a cut is not enough, one must exploit in some non-trivial way
that we are handling a multiplication gate, which is exactly what we do. It is possible that one
could use the fact that we do multiplication together with the concept of residual information
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which was also used in [DPP14], to get better bounds than we achieve here, but this remains a
speculation.

Note that our model does not count communication needed to construct the shares that are
input, nor does it count any communication needed to reconstruct results from the output shares.
This does count in the standard model and makes lower bounds easier to prove. For instance, in
[DNOR16] lower bounds were recently proved on the message complexity of computing a large
class of functions securely, primarily by showing that a significant number of messages must be
sent before the inputs are uniquely determined. In fact, if we included a secret sharing phase
before the multiplication protocol and a reconstruction phase after it, these would entail so much
communication that the bounds obtained from existing results would leave nothing to explain
why the privacy preserving multiplication step is communication intensive.

It is also easy to see that one cannot get bounds in our model based only on correctness,
for instance by methods from communication complexity. If parties have shares in a and b, no
communication is needed to produce some set of correct shares in ab: one can simply consider the
shares in a and b together as a (redundant) sharing of ab. Indeed this satisfies all our demands
to a multiplication gate protocol except privacy: the output threshold is the same and we can
correctly reconstruct ab, but privacy is of course violated because reconstruction would tell us
more than ab. So, our bounds arguably require privacy.

Last but not least, the work of [FDB93] provides impossibility results for homomorphic
monotone sharing schemes. Their result restricts the output sharing scheme to be of the same
structure as the input sharing scheme. Moreover, the work of [FDB93] does not yield implications
to secure computation in the dishonest majority setting (with preprocessing). The result of
[DNPR16] does not pose the restriction on the sharing schemes and provides impossibility results
in the dishonest majority setting.

4In the client-server model, where m is the number of clients and n the number of servers.
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Ref. Adv. Copies Resilience Communication complexity
[GMW87] passive 1 |T | < n O(n2|C|) for boolean circuits
[IPS09] passive 1 |T | < n O(n2|C|)

[BOGW88] passive 1 |T | < n/2 O(n2|C|)
[DN07] passive 1 |T | < n/2 O(n|C|+ n2)
[FY92] passive Θ(n) |T | < (1/2− ε)n O(n|C|)
[DIK10]a passive Θ(n) |T | < (1/2− ε)n O(|C|+ n)
[DIK10]b passive 1 |T | < (1/2− ε)n Õ(|C|+ n · dC + n2)
[IPS09]a active 1 |T | < n O(n2|C|+ log |F| · dC)
[GIP+14] active 1 |T | < n O(n2|C|)
[GIP15] active 1 |T | < n O(n2|C|)
[BFO12] active 1 |T | < n/2 O(n|C|+ n2 logn · dC) + poly(n)
[GIP+14] active 1 |T | < n/2 O(n|C|+ n2)
[GIP15] active 1 |T | < n/2 O(n|C|+ n2)
[IPS09]b active Θ(n) |T | < (1/2− ε)n O(|C|+ n · dC)
[IPS09]c active Θ(n) |T | < (1/2− ε)n O(|C|+m · dC)4

[GIP15] active Θ(n) |T | < (1/2− ε)n O(|C|+ n)
[DIK10]c active 1 |T | < (1/2− ε)n Õ(|C|+ n2 · dC)
[GIP15] active 1 |T | < (1/2− ε)n Õ(|C|+ n · dC + n2)

Table 3.1: [GIP15] Comparison of information-theoretic MPC protocols for arithmetic circuits.
In the above, n is the number of parties, ε is an arbitrary small positive constant, C is an
arithmetic circuit or an SIMD circuit over a finite field F, dC is the multiplicative depth of C,
and T is the set of corrupted parties such that |T | ≤ t for privacy threshold t. We consider two
regimes for such protocols: the single input, single circuit regime and the Franklin and Yung
(FY) [FY92] regime for simultaneously evaluating ` copies of the circuit on different inputs.
Notice that the latter is a special case of the former that allows for simpler and more efficient
solutions. The copies column indicates the number of simultaneously evaluated circuit copies.
Passively secure protocols achieve perfect security while actively secure protocols realize C (with
abort) with at most O(1/|F|) simulation error. The communication complexity column counts
the total number of field elements exchanged between the parties. For the case of simultaneous
evaluation of multiple copies, we count the amortized cost for evaluating a single copy of C.
The protocols having resilience |T | < n are constructed on the OT or OLE hybrid model. An
OLE oracle (an arithmetic generalization of OT) is a generalization of an OT oracle, it receives
a, b ∈ F from one party and x from another, and returns ax+ b to the latter. Note that the Õ
notation suppresses logarithmic factors.
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Part II

Results in the Computational
Setting
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Chapter 4

Secure Computation in the Plain Model
In this chapter we tackle the exact round complexity of secure computation in the multi-

party and two-party settings. In particular, we present our results in [GMPP16]. See Section
2.1.1 for a detailed overview of our contributions.

Overview. For the special case of two-parties without a simultaneous message exchange chan-
nel, this question has been extensively studied and resolved. In particular, as mentioned in
Section 2.1.1, [KO04] proved that five rounds are necessary and sufficient for securely realiz-
ing every two-party functionality where both parties receive the output. However, the exact
round complexity of general multi-party computation, as well as two-party computation with a
simultaneous message exchange channel, is not very well understood.

These questions are intimately connected to the round complexity of non-malleable commit-
ments. Indeed, the exact relationship between the round complexities of non-malleable commit-
ments and secure multi-party computation has also not been explored.

In this work, we revisit these questions and obtain several new results. First, we establish the
following main results. Suppose that there exists a k-round non-malleable commitment scheme,
and let k′ = max(4, k + 1); then,

• (Two-party setting with simultaneous message transmission): there exists a k′-
round protocol for securely realizing every two-party functionality;

• (Multi-party setting): there exists a k′-round protocol for securely realizing the multi-
party coin-flipping functionality.

As a corollary of the above results, by instantiating them with existing non-malleable com-
mitment protocols (from the literature), we establish that four rounds are both necessary and
sufficient for both the results above. Furthermore, we establish that, for every multi-party func-
tionality five rounds are sufficient. We actually obtain a variety of results offering trade-offs
between rounds and the cryptographic assumptions used, depending upon the particular instan-
tiations of underlying protocols.

Due to space constraints we refer to the full version for our multi-party coin-flipping protocol
[GMPP16]. In this thesis, we present the lower bound and the two-party protocol.

4.1 Techniques

We now provide an overview of our approach. As discussed earlier, we first focus on the two-party
setting with a simultaneous message exchange channel.

The starting point of our construction is the Katz-Ostrovsky (KO) protocol [KO04] which is
a four round protocol for one-sided functionalities, i.e., in that only one party gets the output.
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Recall that, this protocol does not assume the presence of a simultaneous message exchange
channel. At the cost of an extra round, the KO two-party protocol can be converted to a
complete (i.e. both-sided) protocol where both parties get their corresponding outputs via a
standard trick [Gol03] as follows: parties compute a modified functionality in which the first
party P1 learns its output as well as the output of the second party P2 in an “encrypted and
authenticated”1 form. It then sends the encrypted value to P2 who can decrypt and verify its
output.

A natural first attempt is to adapt this simple and elegant approach to the setting of simul-
taneous message exchange channel, so that the “encrypted/authenticated output” can somehow
be communicated to P2 simultaneously at the same time when P2 sends its last message, thereby
removing the additional round.

It is not hard to see that any such approach would not work. Indeed, in the presence of
malicious adversaries while dealing with a simultaneous message exchange channel, the protocol
must be proven secure against “rushing adversaries” who can send their messages after look-
ing at the messages sent by the other party. This implies that, if P1 could indeed send the
“encrypted/authenticated output” message simultaneously with last message from P2, it could
have sent it earlier as well. Now, applying this argument repeatedly, one can conclude that
any protocol which does not use the simultaneous message exchange channel necessarily in all
of the four rounds, is bound to fail (see Section 4.3). In particular, any such protocol can be
transformed, by simple rescheduling, into a 3-round protocol contradicting our lower bound2.

This means that we must think of an approach which must use the simultaneous message
exchange channel in each round. In light of this, a natural second attempt is to run two
executions of a 4-round protocol (in which only one party learns the output) in “opposite”
directions. This would allow both parties to learn the output. Unfortunately, such approaches
do not work in general since there is no guarantee that an adversarial party would use the same
input in both protocol executions. Furthermore, another problem with this approach is that of
“non-malleability” where a cheating party can make its input dependent on the honest party’s
input: for example, it can simply “replay” back the messages it receives. A natural approach to
prevent such attacks is to deploy non-malleable commitments, as we discuss below.

Simultaneous executions + non-malleable commitments. Following the approach dis-
cussed above we observe that:

1. A natural direction is to use two simultaneous executions of the KO protocol (or any other
similar 4-round protocol) over the simultaneous message exchange channel in opposite
directions. Since we have only 4 rounds, a different protocol (such as some form of 2-
round semi-honest protocol based on Yao) is not a choice.

2. We must use non-malleable commitments to prevent replay/mauling attacks.

1In particular, the encryption prevents P1 to know P2’s output ensuring output privacy whereas the authen-
tication does not allow P1 to send P2 a wrong output.

2Recall that we show that (see Thoerem 4.2 for a formal statement) 4 rounds are necessary even with simul-
taneous message exchange channels.

42



We remark that, the fact that non-malleable commitments come up as a natural tool is not
a coincidence. As noted earlier, the multi-party case is well known to be inherently connected to
non-malleable commitments. Even though our current focus is solely on the two-party case, this
setting is essentially (a special case of) the multi-party setting due to the use of the simultaneous
message exchange channel. Prior to our work, non-malleable commitments have been used
extensively to design multi-party protocols [Goy11, LP11b, LPTV10, GLOV12]. However, all
of these works result in rather poor round complexity because of their focus on asymptotic, as
opposed to exact, number of rounds.

To obtain our protocol, we put the above two ideas together, modifying several components of
KO3 to use non-malleable commitments. These components are then put together in a way such
that, even though there are essentially two simultaneous executions of the protocol in opposite
directions, messages of one protocol cannot be maliciously used to affect the other messages. In
the following, we highlight the main ideas of our construction:

1. The first change we make is to the proof systems used by KO. Recall that KO uses
the Fiege-Shamir (FS) protocol as a mechanism to “force the output” in the simulation.
Our first crucial modification is to consider a variant of the FS protocol in which the
verifier gives two non-malleable commitments (nmcom) to two strings σ1, σ2 and gives a
witness indistinguishable proof-of-knowledge (WIPOK) that it knows one of them. These
are essentially the simulation trapdoors, but implemented through nmcom instead of a
one-way function. This change is actually crucial, and as such, brings in an effect similar
to “simulation sound” zero-knowledge.

2. The oblivious transfer protocol based on trapdoor permutations and coin-tossing now
performs coin-tossing with the help of nmcom instead of simple commitments. This is
a crucial change since this allows us to slowly get rid of the honest party’s input in the
simulation and still argue that the distribution of the adversary’s input does not change
as a result of this.

We note that there are many parallel executions on nmcom that take place at this stage, and
therefore, we require that nmcom should be non-malleable under many parallel executions.
This is indeed true for most nmcom.

3. Finally, we introduce a mechanism to ensure that the two parties use the exact same
input in both executions. Roughly speaking, this is done by requiring the parties to prove
consistency of messages “across” protocols.

4. To keep the number of rounds to k + 1 (or 4 if k < 3), many of the messages discussed
above are “absorbed” with other rounds by running in parallel.

3The KO protocol uses a clever combination of garble circuits, semi-honest oblivious transfer, coin-tossing,
and WIPOK to ensure that the protocol is executed with a fixed input (allowing at the same time simulation
extractability of the input), and relies on the zero-knowledge property of a modified Fiege-Shamir proof to achieve
output simulation.
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Multi-party setting. The above protocol does not directly extend to the multi-party settings.
Nevertheless, for the special case of coin flipping, we show that a (simplified) version of the above
protocol works for the multi-party case. This is because the coin-tossing functionality does not
really require any computation, and therefore, we can get rid of components such as oblivious
transfer. In fact, this can be extended “slightly more” to also realize the “coin-flipping with
committed inputs” since committing the input does not depend on inputs of other parties.

Next, to obtain our result for general functionalities, we simply invoke known results: using
[MW16] with coin-flipping gives us a six round protocol, and using [GGHR14] gives a five round
result.

4.2 Preliminaries

Notation. We denote the security parameter by κ. We say that a function µ : N → N is
negligible if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) <

1
p(κ) . We use the abbreviation PPT to denote probabilistic polynomial-time. We often use [n] to
denote the set {1, ..., n}. Moreover, we use d← D to denote the process of sampling d from the
distribution D or, if D is a set, a uniform choice from it. If D1 and D2 are two distributions, then
we denote that they are statistically close by D1 ≈s D2; we denote that they are computationally
indistinguishable by D1 ≈c D2; and we denote that they are identical by D1 ≡ D2. Let V be a
random variable corresponding to the distribution D. Sometimes we abuse notation by using V
to denote the corresponding distribution D.

We assume familiarity with several standard cryptographic primitives. For notational pur-
poses, we recall here the basic working definitions for some of them. We skip the well-known
formal definitions for secure two-party and multi-party computations (see Appendix for a formal
description). It will be sufficient to have notation for the two-party setting. We denote a two
party functionality by F : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ where F = (F1, F2). For every pair
of inputs (x, y), the output-pair is a random variable (F1(x, y), F2(x, y)) ranging over pairs of
strings. The first party (with input x) should obtain F1(x, y) and the second party (with input
y) should obtain F2(x, y). Without loss of generality, we assume that F is deterministic. The
security is defined through the ideal/real world paradigm where for adversary A participating
in the real world protocol, there exists an ideal world simulator S such that for every (x, y), the
output of S is indistinguishable from that of A. See Appendix for an extended discussion.

We now recall the definitions for non-malleable commitments as well as some components
from the work of Katz-Ostrovsky [KO04].

4.2.1 Tag Based Mon-Malleable Commitments

Let nmcom = 〈C,R〉 be a k-round commitment protocol where C and R represent (random-
ized) committer and receiver algorithms, respectively. Denote the messages exchanged by
(nm1, . . . , nmk) where nmi denotes the message in the i-th round.

For some string u ∈ {0, 1}κ, tag id ∈ {0, 1}t, non-uniform PPT algorithm M with “advice”
string z ∈ {0, 1}∗, and security parameter κ, consider the following experiment: M on input
(1κ, z), interacts with C who commits to u with tag id; simultaneously,M interacts withR(1κ, ĩd)
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attempting to commit to a related value ũ, again using identity ĩd of its choice (M ’s interaction
with C is called the left interaction, and its interaction with R is called the right interaction);
M controls the scheduling of messages; the output of the experiment is denoted by a random
variable nmcM〈C,R〉(u, z) that describes the view of M in both interactions and the value ũ which
M commits to R in the right execution unless ĩd = id in which case ũ = ⊥, i.e., a commitment
where the adversary copies the identity of the left interaction is considered invalid.

Definition 4.1 (Tag based non-malleable commitments). A commitment scheme nmcom =
〈C,R〉 is said to be non-malleable with respect to commitments if for every non-uniform PPT
algorithmM (man-in-the-middle), for every pair of strings (u0, u1) ∈ {0, 1}κ×{0, 1}κ, every tag-
string id ∈ {0, 1}t, every κ ∈ N, every (advice) string z ∈ {0, 1}∗, the following two distributions
are computationally indistinguishable:

nmcM〈C,R〉(u
0, z) c≈ nmcM〈C,R〉(u

1, z)

Parallel Non-Malleable Commitments. We consider a strengthening of nmcom in which
M can receive commitments to m strings on the “left”, say (u1, . . . , um), with tags (id1, . . . , idm)
and makes m commitments on the “right” with tags (ĩd1, . . . , ĩdm). We assume that m is a
fixed, possibly a-priori bounded, polynomial in the security parameter κ. In the following let
i ∈ [m], b ∈ {0, 1}: We say that a nmcom is an m-bounded parallel non-malleable commitment
if for every pair of sequences {ubi} the random variables nmcM〈C,R〉({u

0
i }, z) and nmcM〈C,R〉({u

1
i }, z)

are computationally indistinguishable where nmcM〈C,R〉({u
b
i}, z) describes the view of M and the

values {ũbi} committed by M in the m sessions on the right with tags {ĩdi} while receiving
parallel commitments to {ubi} on left with tags {idi}.

First message binding property. It will be convenient in the notation to assume that the
first message nm1 of the non-malleable commitment scheme nmcom statistically determines the
message being committed. This can be relaxed to only require that the message is fixed before
the last round if k ≥ 3.

Non-Malleable Commitment Robust w.r.t. k-round Protocols. Lin and Pass [LP09a]
introduced the notion of non-malleability w.r.t. arbitrary k-round protocols. Traditional defini-
tions of non-malleability consider a setting where a man-in-the middle adversary is participating
in two (or more) executions of the same protocol. However, non-malleability w.r.t. arbitrary
protocols considers a class of adversaries that can participate in a left interaction of any arbitrary
protocol.

Consider a one-many man-in-the-middle adversaryM that participates in one left interaction
– communicating with a machine B –and one right interaction– acting as a committer using the
commitment scheme 〈C,R〉. As in the standard definition of non-malleability, M can adaptively
choose the identity in the right interaction. We denote by nmcB,M〈C,R〉(y, z) the random variable
consisting of the view of M(z) in a man-in-the-middle execution when communicating with
B(y) on the left and an honest receiver on the right, combined with the value M commits to
on the right. Intuitively, we say that 〈C,R〉 is non-malleable w.r.t. B if nmcB,M〈C,R〉(y

1, z) and
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nmcB,M〈C,R〉(y
2, z) are indistinguishable, whenever interactions with B(y1) and B(y2) cannot be

distinguished.

Definition 4.2 (Robust non-malleable commitments). Let B a probabilistic polynomial-time
machine. A commitment scheme nmcom = 〈C,R〉 is said to be non-malleable w.r.t. B, if for
every two sequences {y1

κ}κ∈N and {y2
κ}κ∈N where y1

κ, y
2
κ ∈ {0, 1}κ, every κ ∈ N, every (advice)

string z ∈ {0, 1}∗, the following two distributions are computationally indistinguishable for all
non-uniform PPT algorithms M̃ :

viewM̃ [〈B(y1
κ), M̃(z)〉(1κ)] c≈ viewM̃ [〈B(y2

κ), M̃(z)〉(1κ)].

where viewM̃ [〈B(y),M(z)〉(1κ)] denotes the view of M̃ in interaction with B on common
input 1κ, and private inputs z and y respectively, then it also holds that for every non-uniform
PPT man-in-the-middle adversary M the following two distributions are computationally in-
distinguishable:

nmcB,M〈C,R〉(y
1
κ, z)

c≈ nmcB,M〈C,R〉(y
2
κ, z)

We say that nmcom is non-malleable w.r.t. k-round protocols if nmcom is non-malleable
w.r.t. any machine B that interacts with the man-in-the-middle adversary in k rounds. Any
commitment scheme that is ”extractable” and has more than k ”rewinding slots” is directly one-
many non-malleable w.r.t. k-round protocols [LP09a]. In this work, we focus on non-malleability
w.r.t 3-round protocols and in particular 3-round WI proof of knowledge protocols; we call such
non malleable commitments 3-robust (or simply robust).

4.2.2 Components of our Protocol

In this section, we recall some components from the KO protocol [KO04]. These are mostly
standard and recalled here for a better exposition. The only (minor but crucial) change needed
in our protocol is to the FLS proof system [FLS99, FS90a, Fei90] where a non-malleable com-
mitment protocol is used by the verifier. For concreteness, let us discuss how to fix these proof
systems first.

Modified Feige-Shamir proof systems. We use two proof systems: ΠWIPOK and ΠFS. Pro-
tocol ΠWIPOK is the 3-round, public-coin, witness-indistinguishable proof-of-knowledge based on
the work of Feige, Lapidot, Shamir [FLS99] for proving graph Hamiltonicity. This proof system
proves statements of the form st1 ∧ st2 where st1 is fixed at the first round of the protocol, but
st2 is determined only in the last round of the protocol.4 For concreteness, this proof system is
given in the Appendix.

Protocol ΠFS is the 4-round zero-knowledge argument-of-knowledge protocol of Feige and
Shamir [FS90a], which allows the prover to prove statement thm, with the modification that the
protocol from verifier’s side is implemented using nmcom. More specifically,

4Typically, st1 is a empty statement and not usually mentioned; but KO [KO04] uses a specific, non-empty,
statement and so does this work.
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• Recall that the Feige-Shamir protocol consists of two executions of ΠWIPOK in reverse
directions. In the first execution, the verifier selects a one-way function f and sets x1 =
f(w1), x2 = f(w2) and proves the knowledge of a witness for x1 ∨ x2. In the second
execution, prover proves the knowledge of a witness to the statement thm ∨ (x1 ∨ x2)
where thm is the statement to be proven. The rounds of these systems can be somewhat
parallelized to obtain a 4-round protocol.
• Our modified system, simply replaces the function f and x1, x2 with two executions of

nmcom. For convenience, suppose that nmcom has only 3 rounds. Then, our protocol
creates the first message of two independent executions of nmcom to strings σ1, σ2, denoted
by nmσ1

1 , nmσ2
1 respectively, and sets x1 = nmσ1

1 , x2 = nmσ2
1 . The second and third messages

of nmcom are sent with the second and third messages of the original FS protocol.
If nmcom has more than 3 rounds, simply complete the first k − 3 rounds of the two
executions before the 4 messages of the proof system above are exchanged.
• As before, although ΠFS proves statement thm, as noted in [KO04], it actually proves

statements of the form thm ∧ thm′ where thm can be fixed in the second round, and
thm′ in the fourth round. Usually thm is empty and not mentioned. Indeed, this is
compatible with the second ΠWIPOK which proves statement of the form st1 ∧ st2, just set
st1 = thm, st2 = thm′.

For completeness, we describe the full ΠFS protocol in the Appendix.

4.2.2.1 Components of Katz-Ostrovsky Protocol

The remainder of this section is largely taken from [KO04] where we provide basic notations and
ideas for semi-honest secure two-party computation based on Yao’s garbled circuits and semi-
honest oblivious transfer (based on trapdoor one-way permutations). Readers familiar with
[KO04] can skip this part without loss in readability.

Semi-Honest Secure Two-party Computation. We view Yao’s garbled circuit scheme
[Yao82, LP09b] as a tuple of PPT algorithms (GenGC,EvalGC), where GenGC is the “generation
procedure” which generates a garbled circuit for a circuit C along with “labels,” and EvalGC is
the “evaluation procedure” which evaluates the circuit on the “correct" labels. Each individual
wire i of the circuit is assigned two labels, namely Zi,0, Zi,1. More specifically, the two algorithms
have the following format (here i ∈ [κ], b ∈ {0, 1}):

• ({Zi,b},GCy) ← GenGC(1κ, F, y): GenGC takes as input a security parameter κ, a circuit
F and a string y ∈ {0, 1}κ. It outputs a garbled circuit GCy along with the set of all
input-wire labels {Zi,b}. The garbled circuit may be viewed as representing the function
F (·, y).

• v = EvalGC(GCy, {Zi,xi}): Given a garbled circuit GCy and a set of input-wire labels {Zi,xi}
where x ∈ {0, 1}κ, EvalGC outputs either an invalid symbol ⊥, or a value v = F (x, y).

The following properties are required:
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Correctness. Pr [F (x, y) = EvalGC(GCy, {Zi,xi})] = 1 for all F, x, y, taken over the correct
generation of GCy, {Zi,b} by GenGC.

Security. There exists a PPT simulator SimGC such that for any (F, x) and uniformly random
labels {Zi,b}, we have that:

(GCy, {Zi,xi})
c≈ SimGC (1κ, F, v)

where ({Zi,b},GCy)← GenGC (1κ, F, y) and v = F (x, y).

In the semi-honest setting, two parties can compute a function F of their inputs, in which only
one party, say P1, learns the output, as follows. Let x, y be the inputs of P1, P2, respectively.
First, P2 computes ({Zi,b},GCy)← GenGC(1κ, F, y) and sends GCy to P1. Then, the two parties
engage in κ parallel instances of OT. In particular, in the i-th instance, P1 inputs xi, P2 inputs
(Zi,0, Zi,1) to the OT protocol, and P1 learns the “output” Zi,xi . Then, P1 computes v =
EvalGC(GCy, {Zi,xi}) and outputs v = F (x, y).

A 3-round, semi-honest, OT protocol can be constructed from enhanced trapdoor permuta-
tions (TDP). For notational purposes, define TDP as follows:

Definition 4.3 (Trapdoor permutations). Let F be a triple of PPT algorithms
(Gen,Eval, Invert) such that if Gen(1κ) outputs a pair (f, td), then Eval(f, ·) is a permutation
over {0, 1}κ and Invert(f, td, ·) is its inverse. F is a trapdoor permutation such that for all PPT
adversaries A:

Pr[(f, td)← Gen(1κ); y ← {0, 1}κ;x← A(f, y) : Eval(f, x) = y] ≤ µ(κ).

For convenience, we drop (f, td) from the notation, and write f(·), f−1(·) to denote algorithms
Eval(f, ·), Invert(f, td, ·) respectively, when f, td are clear from the context. We assume that F
satisfies (a weak variant of ) “certifiability”: namely, given some f it is possible to decide in
polynomial time whether Eval(f, ·) is a permutation over {0, 1}κ.

Let H be the hardcore bit function for κ bits for the family F ; κ hardcore bits
are obtained from a single-bit hardcore function h and f ∈ F as follows: H(z) =
h(z)‖h(f(z))‖ . . . ‖h(fκ−1(z)). Informally, H(z) looks pseudorandom given fκ(z).

The semi-honest OT protocol based on TDP is constructed as follows. Let P2 hold two
strings Z0, Z1 ∈ {0, 1}κ and P1 hold a bit b. In the first round, P2 chooses trapdoor permutation
(f, f−1) ← Gen(1κ) and sends f to P1. Then P1 chooses two random string z′0, z′1 ← {0, 1}κ,
computes zb = fκ(z′b) and z1−b = z′1−b and sends (z0, z1) to P2. In the last round P2 computes
Wa = Za + H(f−κ(za)) where a ∈ {0, 1}, H is the hardcore bit function and sends (W0,W1) to
P1. Finally, P2 can recover Zb by computing Zb = Wb + H(zb).

Putting it altogether, we obtain the following 3-round, semi-honest secure two-party protocol
for the single-output functionality F (here only P1 receives the output):

Protocol ΠSH . P1 holds input x ∈ {0, 1}κ and P2 holds inputs y ∈ {0, 1}κ. Let F be a family
of trapdoor permutations and let H be a hardcore bit function. For all i ∈ [κ] and b ∈ {0, 1} the
following steps are executed:
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Round-1 : P2 computes ({Zi,b},GCy) ← GenGC(1κ, F, y) and chooses trapdoor permutation
(fi,b, f−1

i,b )← Gen(1κ) and sends (GCy, {fi,b}) to P2.

Round-2 : P1 chooses random strings {z′i,b}, computes zi,b = fκ(z′i,b) and zi,1−b = z′i,1−b and
sends {zi,b} to P2.

Round-3 : P2 computes Wi,b = Zi,b + H(f−κi,b (zi,b)) and sends {Wi,b} to P2.

Output : P1 recovers the labels Zi,xi = Wi,xi +H(zi,xi) and computes v = EvalGC(GCy, {Zi,xi})
where v = F (x, y)

Equivocal Commitment scheme Eqcom. We assume familiarity with equivocal commit-
ments, and use the following equivocal commitment scheme Eqcom based on any (standard)
non-interactive, perfectly binding, commitment scheme Com: to commit to a bit x, the
sender chooses coins ζ1, ζ2 and computes Eqcom(x; ζ1, ζ2) def= Com(x; ζ1)||Com(x; ζ2). It sends
Cx = Eqcom(x; ζ1, ζ2) to the receiver along with a zero-knowledge proof that Cx was constructed
correctly (i.e., that there exist x, ζ1, ζ2 such that Cx = Eqcom(x; ζ1, ζ2).

To decommit, the sender chooses a bit b at random and reveals x, ζb, denoted by openCx .
Note that a simulator can “equivocate” the commitment by setting C = Com(x; ζ1)||Com(x; ζ2)
for a random bit x, simulating the zero-knowledge proof and then revealing ζ1 or ζ2 depending
on x and the bit to be revealed. This extends to strings by committing bitwise.

Sketch of the Two-Party KO Protocol. The main component of the two-party KO protocol
is Yao’s 3-round protocol ΠSH , described above, secure against semi-honest adversaries. In
order to achieve security against a malicious adversary their protocol proceeds as follows. Both
parties commit to their inputs; run (modified) coin-tossing protocols to guarantee that each
party obtains random coins which are committed to the other party (note that coin flipping
for the side of the garbler P2 is not needed since a malicious garbler P2 gains nothing by using
non-uniform coins. To force P1 to use random coins the authors use a 3-round sub-protocol
which is based on the work of [BL02]); and run the ΠSH protocol together with ZK arguments
to avoid adversarial inconsistencies in each round. Then, simulation extractability is guaranteed
by the use of WI proof of knowledge and output simulation by the Feige-Shamir ZK argument
of knowledge.

However, since even a ZK argument for the first round of the protocol alone will already
require 4 rounds, the authors use specific proof systems to achieve in total a 4-round protocol.
In particular, the KO protocol uses a specific WI proof of knowledge system with the property
that the statement to be proven need not be known until the last round of the protocol, yet
soundness, completeness, and witness-indistinguishability still hold. Also, this proof system has
the property that the first message from the prover is computed independently of the statement
being proved. Note that their 4-round ZK argument of knowledge enjoys the same properties.
Furthermore, their protocol uses an equivocal commitment scheme to commit to the garble
circuit for the following reason. Party P1 may send his round-two message before the proof of
correctness for round one given by P2 is complete. Therefore, the protocol has to be constructed
in a way that the proof of correctness for round one completes in round three and that party
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P2 reveals the garbled circuit in the third round. But since the proof of security requires P2
to commit to a garble circuit at the end of the first round, P2 does so using an equivocal
commitment scheme.

4.3 The Exact Round Complexity of Coin Tossing

In this section we first show that it is impossible to construct two-party (simulatable) coin-
flipping for a super-logarithmic number of coins in 3 simultaneous message exchange rounds.
We first recall the definition of a simulatable coin flipping protocol using the real/ideal paradigm
from [KOS03].

Definition 4.4 ([KOS03]). An n-party protocol Π is a simulatable coin-flipping protocol if it
is an (n − 1)-secure protocol realizing the coin-flipping functionality. That is, for every PPT
adversary A corrupting at most n − 1 parties there exists an expected PPT simulator S such
that the (output of the) following experiments are indistinguishable. Here we parse the result of

REAL(1κ, 1λ) IDEAL(1κ, 1λ)
c, viewA ← REALΠ,A(1κ, 1λ) c′ ← {0, 1}λ

c̃, viewS ← SA(c′, 1κ, 1λ)
Output (c, viewA) If c̃ = {c′,⊥} then Output (c̃, viewS)

Else output fail

running protocol Π with adversary A (denoted by REALΠ,A(1κ, 1λ)) as a pair (c, viewA) where
c ∈ {0, 1}λ ∪ {⊥} is the outcome and viewA is the view of the adversary A.

We restrict ourselves to the case of two parties (n = 2), which can be extended to any n > 2.
Below we denote messages in protocol Π which are sent by party Pi to party Pj in the ρ-th
round by mΠ[ρ]

i,j .
As mentioned earlier, Katz and Ostrovsky [KO04] showed that simulatable coin-flipping

protocol is impossible in 4 rounds without simultaneous message exchange. Since we will use
the result for our proofs in this section, we state their result below without giving their proof.

Lemma 4.1. [KO04, Theorem 1] Let p(κ) = ω(log κ), where κ is the security parameter. Then
there does not exist a 4-round protocol without simultaneous message transmission for tossing
p(κ) coins which can be proven secure via black-box simulation.

In the following, we state our impossibility result for coin-fliping in 3 rounds of simultaneous
message exchange.

Lemma 4.2. Let p(κ) = ω(logκ), where κ is the security parameter. Then there does not exist
a 3-round protocol with simultaneous message transmission for tossing p(κ) coins which can be
proven secure via black-box simulation.
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P1 P2

Rescheduled=⇒

P1 P2P1 P2

Figure 4.1: [GMPP16] A 3-round simultaneous protocol rescheduled to a 4-round non-
simultaneous protocol.

Proof. We prove the above statement by showing that a 3-round simultaneous message exchange
protocol can be “rescheduled” to a 4-round non-simultaneous protocol which contradicts the
impossibility of [KO04]. Here by rescheduling we mean rearrangement of the messages without
violating mutual dependencies among them, in particular without altering the next-message
functions.

For the sake of contradiction, assume that there exists a protocol Π⇔flip which realizes simu-
latable coin-flipping in 3 simultaneous message exchange rounds, then we can reschedule it in
order to construct a protocol Π

←→
flip which realizes simulatable coin-flipping in 4 rounds5 without

simultaneous message exchange as follows:

Protocol Π
←→
flip

Round-1: P1 sends the first message m
Π
←
→
flip[1]

1,2 := m
Π⇔flip[1]
1,2 to P2.

Round-2: Party P2 sends to P1 the second message

m
Π
←
→
flip[2]

2,1 := (m
Π⇔flip[1]
2,1 ,m

Π⇔flip[2]
2,1 ).

Round-3: Party P1 sends to P2 the third message

m
Π
←
→
flip[3]

1,2 := (m
Π⇔flip[2]
1,2 ,m

Π⇔flip[3]
1,2 ).

Round-4: Finally P2 sends to P1 the last message m
Π
←
→
flip[4]

2,1 := m
Π⇔flip[3]
2,1 .

We provide a pictorial presentation of the above rescheduling in Fig. 4.1 for better illustration.
Now, without loss of generality assume that P1 is corrupted. Then we need to build an

expected PPT simulator SP1 (or simply S) meeting the adequate requirements (according to
Def. 4.4). First note that, since by assumption the protocol Π⇔flip is secure (i.e. achieves Def. 4.4)

5The superscript ⇔ stands for the simultaneous message exchange setting and ←→ for the setting without
simultaneous message exchange
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the following holds: for any corrupt P⇔1 executing the simultaneous message exchange protocol
Π⇔flip there exists an expected PPT simulator S⇔ (let us call it the “inner” simulator and S the
“outer” simulator) in the ideal world. So, S can be constructed using S⇔ for a corrupted party
P⇔1 which can be emulated by S based on P1. Finally, S just outputs whatever S⇔ returns. S
emulates the interaction between S⇔ and P⇔1 as follows:

1. On receiving a value c′ ∈ {0, 1}λ from the ideal functionality, S runs the inner simulator
S⇔(c′, 1κ, 1λ) to get the first message m

Π⇔flip[1]
2,1 . Notice that in protocol Π⇔flip the first message

from (honest) party P⇔2 does not depend on the first message of the corrupted party P⇔1 .
So, the inner simulator must be able to produce the first message even before seeing the
first message of party P1 (or the emulated party P⇔1 )6. Then it runs P1 to receive the first
message m

Π⇔flip[1]
1,2 .

2. Then S forwards m
Π⇔flip[1]
1,2 to the inner simulator which then returns the second simulated

message m
Π⇔flip[2]
2,1 . Now S can construct the simulated message m

Π
←
→
flip[2]

2,1 by combining m
Π⇔flip[2]
2,1

and m
Π⇔flip[1]
2,1 received earlier (see above) which S then forwards to P1.

3. In the next step, S gets back messages m
Π
←
→
flip[3]

1,2 = (m
Π⇔flip[2]
1,2 ,m

Π⇔flip[3]
1,2 ) from P1. It then

forwards the second message m
Π⇔flip[2]
1,2 to S⇔, which then returns the third simulated message

m
Π⇔flip[3]
2,1 . Finally it forwards the third message m

Π⇔flip[3]
1,2 to S⇔.

4. S outputs whatever transcript S⇔ outputs in the end.

5. Note that, whenever the inner simulator S⇔ asks to rewind the emulated P⇔1 , S rewinds
P1.

It is not hard to see that the simulator S emulates correctly the party P⇔1 and hence by the
security of Π⇔flip, the inner simulator S⇔ returns an indistinguishable (with the real world) view.
The key-point is that the re-scheduling of the messages from protocol Π⇔flip does not affect the
dependency (hence the corresponding next message functions) and hence the correctness and
security remains intact in Π

←→
flip.

We stress that the proof for the case where P2 is corrupted is straightforward given the
above. However, in that case, since P2’s first message depends on the first message of honest P1,
it is mandatory for the inner simulator S⇔ to output the first message before seeing anything
even in order to run the corrupted P2 which is not necessary in the above case. As we stated
earlier this is possible as the inner simulator S⇔ should be able to handle rushing adversaries.

Hence we prove that if the underlying protocol Π⇔flip securely realizes simulatable coin-flipping
in 3 simultaneous rounds then Π

←→
flip securely realizes coin-flipping in 4 non-simultaneous rounds

which contradicts the KO lower bound (Lemma 4.1). This concludes the proof.
6In particular, for so-called “rushing" adversaries, who can wait until receiving the first message and then

send its own, the inner simulator must simulate the first message to get the first message from the adversary.
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P1 P2

Rescheduled=⇒

P1 P2P1 P2

Figure 4.2: [GMPP16] Rescheduling when P2 does not send the first message.

Going a step further we show that any four-round simultaneous message exchange protocol
realizing simulatable coin-flipping must satisfy a necessary property, that is each round must
be a strictly simultaneous message exchange round, in other words, both parties must send
some “non-redundant” message in each round. By “non-redundant” we mean that the next
message from the other party must depend on the current message. Below we show the above,
otherwise the messages can be again subject to a “rescheduling” mechanism similar to the one
in Lemma 4.2, to yield a four-round non-simultaneous protocol; thus contradicting Lemma 4.1.
More specifically,

Lemma 4.3. Let p(κ) = ω(logκ), where κ is the security parameter. Then there does not exist
a 4-round protocol with at least one unidirectional round (i.e. a round without simultaneous
message exchange) for tossing p(κ) coins which can be proven secure via black-box simulation.

Proof (Sketch). We provide a sketch for any protocol with exactly one unidirectional round
where only one party, say P1 sends a message to P2. Clearly, there can be four such cases where
P2’s message is omitted in one of the four rounds. In Fig. 4.2 we show the case where P2 does
not send the message in the first round, and any such protocol can be re-scheduled (similar to
the proof of Lemma 4.2) to a non-simultaneous 4-round protocol without altering any possible
message dependency. This observation can be formalized in a straightforward manner following
the proof of Lemma 4.2 and hence we omit the details. Therefore, again combining with the
impossibility from Lemma 4.1 by [KO04] such simultaneous protocol can not realize simulatable
coin-flipping. The other cases can be easily observed by similar rescheduling trick and therefore
we omit the details for those cases.

4.4 Two-Party Computation in the Simultaneous Message
Exchange Model

In this section, we present our two party protocol for computing any functionality in the presence
of a static, malicious and rushing adversary. As discussed earlier, we are in the simultaneous
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message exchange channel setting where both parties can simultaneously exchange messages in
each round. The structure of this protocol will provide a basis for our later protocols as well.

An overview of the protocol appears in Section 4.1. In a high level, the protocol consists
of two simultaneous executions of a one-sided (single-output) protocol to guarantee that both
parties learn the output. The overall skeleton of the one-sided protocol resembles the KO
protocol [KO04] which uses a clever combination of OT, coin-tossing, and ΠWIPOK to ensure that
the protocol is executed with a fixed input (allowing at the same time simulation extractability
of the input), and relies on the zero-knowledge property of ΠFS to “force the output”. A sketch
of the KO protocol is given in Section 4.2.2. In order to ensure “independence of inputs” our
protocol relies heavily on non-malleable commitments. To this end, we change the one-sided
protocol to further incorporate non-malleable commitments so that similar guarantees can
be obtained even in the presence of the “opposite side” protocol, and we further rely on
zero-knowledge proofs to ensure that parties use the same input in both executions.

4.4.1 Our Protocol

To formally define our protocol, let:

• (GenGC,EvalGC) be the garbled-circuit mechanism with simulator SimGC; F =
(Gen,Eval, Invert) be a family of TDPs with domain {0, 1}κ; H be the hardcore bit func-
tion for κ bits; com be a perfectly binding non-interactive commitment scheme; Eqcom be
the equivocal scheme based on com, as described in Section 6.1.3;

• nmcom be a tag based, parallel7 and 3-robust non-malleable commitment scheme for strings,
supporting tags/identities of length κ;

• ΠWIPOK be the witness-indistinguishable proof-of-knowledge for NP as described in Section
6.1.3;

• ΠFS be the proof system for NP, based on nmcom and ΠWIPOK, as described in Section
6.1.3;

• Simplifying assumption: for notational convenience only, we assume for now that
nmcom consists of exactly three rounds, denoted by (nm1, nm2, nm3). This assumption is
removed later (see Remark 4.1).

We also assume that the first round, nm1, is from the committer and statistically de-
termines the message to be committed. We use the notation nm1 = nmcom1(id, r;ω) to
denote the committer’s first message when executing nmcom with identity id to commit
to string r with randomness ω.

7We actually need security against an a-priori bounded number of polynomial executions. Almost all known
protocols for nmcom have this additional property.
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P1(x) P2(y)

Choose {ri,b, ωi,b} ← {0, 1}κ;
Compute {nmi,b

1 }
of nmcom(id1, ri,b;ωi,b);
Compute p1 of ΠWIPOK;
Compute fs1 of ΠFS;

m1 =
(
{nmi,b

1 }, p1, fs1
)
-

Compute {nmi,b
2 }, p2, fs2;

Choose {r′i,b} ← {0, 1}κ and(
fi,b, f

−1
i,b

)
← Gen(1κ);

Generate ({Zi,b}, GCy) from
GenGC(1κ, F1, y ; Ω);
Compute Ci,blab ← Com(Zi,b;ω′i,b);
Compute Cgc ← Eqcom(GCy; ζ);

�

m2 =
(
{nmi,b

2 , r′i,b, fi,b,Ci,blab},

Cgc, p2, fs2

)
Compute {nmi,b

3 }, fs3;
Compute p3 for st1 ∧ st3

8;
If xi = 0 :
z′i,0 ← {0, 1}κ, zi,0 = fκi,0(z′i,0),
zi,1 = ri,1 + r′i,1;
If xi = 1 :
z′i,1 ← {0, 1}κ, zi,1 = fκi,1(z′i,1)
zi,0 = ri,0 + r′i,0;

m3 =
(
{nmi,b

3 , zi,b}, p3, fs3

)
-

Compute Wi,b = Zi,b + H(f−κ(zi,b)), openCgc ;
Compute fs4 for st2 ∧ st4

9;

�
m4 =

(
{Wi,b}, fs4, openCgc

)
Compute Zi,xi = Wi,xi + H(zi,xi);
Output v = EvalGC(GCy, {Zi,xi});

Figure 4.3: [GMPP16] High-level description of the left execution of Π2PC.

We are now ready to describe our protocol. A high level sketch of the left execution of our
protocol where P1 receives the output is given in Figure 4.3.

Protocol Π2PC. We denote the two parties by P1 and P2; P1 holds input x ∈ {0, 1}κ and
P2 holds input y ∈ {0, 1}κ. Furthermore, the identities of P1, P2 are id1, id2 respectively where

8Informally, st1 represents that P1 “knows” one of the decommitment values of the first round for every i and
st3 says that P1 correctly constructed {zi,b}.

9Informally, st2 is the statement that P2 performed his first step correctly and st4 is the statement that P2
performed both oblivious transfers correctly.
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P1 P2

m1

m̃2

m3

m̃4

m̃1

m2

m̃3

m4

Figure 4.4: [GMPP16] 2-PC in the simultaneous message exchange model.

id1 6= id2. Let F := (F1, F2) : {0, 1}κ × {0, 1}κ → {0, 1}κ × {0, 1}κ be the functions to be
computed.

The protocol consists of four (strictly) simultaneous message exchange rounds, i.e., both
parties send messages in each round. The protocol essentially consists of two simultaneous
executions of a protocol in which only one party learns the output. In the first protocol, P1
learns the output and the messages of this protocol are denoted by (m1,m2,m3,m4) where
(m1,m3) are sent by P1 and (m2,m4) are sent by P2. Likewise, in the second protocol P2 learns
the output and the messages of this protocol are denoted by (m̃1, m̃2, m̃3, m̃4) where (m̃1, m̃3)
are sent by P2 and (m̃2, m̃4) are sent by P1. Therefore, messages (mj , m̃j) are exchanged
simultaneously in the j-th round, j ∈ {1, . . . , 4} (see figure 4.4).

We now describe how these messages are constructed in each round below. In the following
i always ranges from 1 to κ and b from 0 to 1.

Round 1. In this round P1 sends a message m1 and P2 sends a symmetrically constructed
message m̃1. We first describe how P1 constructs m1.
Actions of P1:

1. P1 starts by committing to 2κ random strings {(r1,0, r1,1), . . . , (rκ,0, rκ,1)} using 2κ
parallel and independent executions of nmcom with identity id1. I.e., it uniformly
chooses strings ri,b, randomness ωi,b, and generates nmi,b

1 which is the first message
corresponding to the execution of nmcom(id1, ri,b;ωi,b).

2. P1 prepares the first message p1 of ΠWIPOK, as well as the first message fs1 of ΠFS.
For later reference, define st1 to be the following: ∃{(ri, ωi)}i∈[κ] s.t.:

∀i :
(
nmi,0

1 = nmcom1(id1, ri;ωi) ∨ nmi,1
1 = nmcom1(id1, ri;ωi)

)
Informally, st1 represents that P1 “knows” one of the decommitment values for every
i.
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3. Message m1 is defined to be the tuple
(
{nmi,b

1 }, p1, fs1
)
.

Actions of P2:

Performs the same actions as P1 to sample the values
{(
r̃i,b, ω̃i,b

)}
and constructs

m̃1 :=
(
{ñmi,b

1 }, p̃1, f̃s1
)
where all ñmi,b

1 are generated with id2. Define the statement
s̃t1 analogously for these values.

Round 2. In this round P2 sends a message m2 and P1 sends a symmetrically constructed
message m̃2. We first describe how P2 constructs m2.
Actions of P2:

1. P2 generates the second messages {nmi,b
2 } corresponding to all executions of nmcom

initiated by P1 (with id1).
2. P2 prepares the second message p2 of the ΠWIPOK protocol initiated by P1.
3. P2 samples random strings {r′i,b} and

(
fi,b, f

−1
i,b

)
← Gen(1κ) for the oblivious transfer

executions.
4. P2 obtains the garbled labels and the circuit for F1:

(
{Zi,b}, GCy

)
=

GenGC
(
1κ, F1, y ; Ω

)
.

5. P2 generates standard commitments to the labels, and an equivocal commitment to
the garbled circuit: i.e., Ci,blab ← Com(Zi,b;ω′i,b) and Cgc ← Eqcom(GCy; ζ).

6. P2 prepares the second message fs2 of the ΠFS protocol initiated by P1.
For later reference, define st2 to be the following: ∃

(
y,Ω,GCy, {Zi,b, ω′i,b}, ζ

)
s.t.:

a)
(
{Zi,b}, GCy

)
= GenGC

(
1κ, F1, y ; Ω

)
b) ∀(i, b) : Ci,blab = Com(Zi,b;ω′i,b)
c) Cgc = Eqcom(GCy; ζ)

(Informally, st2 is the statement that P2 performed this step correctly.)

7. Define message m2 :=
(
{nmi,b

2 , r
′
i,b, fi,b,C

i,b
lab},Cgc, p2, fs2

)
.

Actions of P1:

Performs the same actions as P2 in the previous step to construct the message m̃2 :=(
{ñmi,b

2 , r̃
′
i,b, f̃i,b, C̃

i,b
lab}, C̃gc, p̃2, f̃s2

)
w.r.t. identity id2, function F2, and input x. Define

the (remaining) values f̃ ′−1
i,b , Z̃i,b, ω̃

′
i,b,GCx, Ω̃, ζ̃ and statement s̃t2 analogously.

Round 3. In this round P1 sends a message m3 and P2 sends a symmetrically constructed
message m̃3. We first describe how P1 constructs m3.
Actions of P1:

1. P1 prepares the third message {nmi,b
3 } of nmcom (with id1).

57



2. If any of {fi,b} are invalid, P1 aborts. Otherwise, it invokes κ parallel executions of
oblivious transfer to obtain the input-wire labels corresponding to its input x. More
specifically, P1 proceeds as follows:
– If xi = 0, sample z′i,0 ← {0, 1}κ, set zi,0 = fκi,0(z′i,0), and zi,1 = ri,1 + r′i,1.
– If xi = 1, sample z′i,1 ← {0, 1}κ, set zi,1 = fκi,1(z′i,1), and zi,0 = ri,0 + r′i,0.

3. Define st3 to be the following: ∃{(ri, ωi)}i∈[κ] s.t. ∀i:

a) (nmi,0
1 = nmcom1(id1, ri;ωi) ∧ zi,0 = ri + r′i,0), or

b) (nmi,1
1 = nmcom1(id1, ri;ωi) ∧ zi,1 = ri + r′i,1)

Informally, st3 says that P1 correctly constructed {zi,b}.
4. P1 prepares the final message p3 of ΠWIPOK proving the statement: st1∧ st3.10 P1 also

prepares the third message fs3 of ΠFS.

5. Define m3 :=
(
{nmi,b

3 , zi,b}, p3, fs3
)
to P2.

Actions of P2:

Performs the same actions as P1 in the previous step to construct the message m̃3 :=(
{ñmi,b

3 , z̃i,b}, p̃3, f̃s3
)
w.r.t. identity id2 and input y. The (remaining) values {z̃i,b, z̃′i,b}

and statement s̃t3 are defined analogously.

Round 4. In this round P2 sends a message m4 and P1 sends a symmetrically constructed
message m̃4. We first describe how P2 constructs m4.
Actions of P2:

1. If p3, fs3 are not accepting, P2 aborts. Otherwise, P2 completes the execution of
the oblivious transfers for every (i, b). I.e., it computes Wi,b = Zi,b + H(f−κ(zi,b)).
Moreover, P2 decommits Cgc as GCy, denoted by openCgc to Pi.

2. Define st4 to be the following: ∃ (y,Ω,GCy, {Zi,b}, ω′i,b, z′i,b, z̃′i}i∈[κ],b∈{0,1}) s.t.

a) ∀(i, b):
(
Ci,blab = Com(Zi,b;ω′i,b)

) ∧ (
fκi,b(z′i,b) = zi,b

) ∧ (
Wi,b = Zi,b + H((z′i,b))

)
b)
((
{Zi,b}, GCy

)
= GenGC

(
1κ, F1, y ; Ω

)) ∧
(Cgc = Eqcom(GCy; ζ))

c) ∀i: z̃i,yi = f̃κi,yi(z̃
′
i)

Informally, this means that P2 performed both oblivious transfers correctly.
3. P2 prepares the final message fs4 of ΠFS proving the statement st2 ∧ st4.11

4. Define m4 :=
(
{Wi,b}, fs4, openCgc

)
.

10Honest P1 knows multiple witnesses for st1. For concreteness, we have to use one of them randomly in the
proof.

11Recall that ΠFS is a modified version of FS protocol: it uses two executions of nmcom to construct its first
message, namely, the first message consists of (nm1

1, nm2
1)) corresponding to two executions of nmcom committing

to strings σ1, σ2 (see Section 6.1.3).
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Actions of P1:

Performs the same actions as P2 in the previous step to construct the message m̃4 :=(
{W̃i,b}, f̃s4, topenCgc

)
and analogously defined statement s̃t4.

Output compuation.
P1’s output: If any of (fs4,GCy, openCgc) or the openings of {Wi,b} are invalid, P1
aborts. Otherwise, P1 recovers the garbled labels {Zi := Zi,xi} from the completion
of the oblivious transfer, and computes F1(x, y) = EvalGC(GCy, {Zi}).

P2’s output: If any of (f̃s4,GCx, topenCgc) or the openings of {W̃i,b} are invalid, P2

aborts. Otherwise, P2 recovers the garbled labels {Z̃i := Z̃i,yi} from the completion
of the oblivious transfer, and computes F2(x, y) = EvalGC(GCx, {Z̃i}).

Remark 4.1. If nmcom has k > 3 rounds, the first k − 3 rounds can be performed before the
4 rounds of Π2PC start; this results in a protocol with k + 1 rounds. If k < 3, then the protocol
has only 4 rounds. Also, for large k, it suffices if the first k − 2 rounds of nmcom statistically
determine the message to be committed; the notation is adjusted to simply use the transcript
up to k − 2 rounds to define the statements for the proof systems.

Finally, the construction is described for a deterministic F . Known transformations (see
[Gol04, Section 7.3]) yield a protocol for randomized functionalities, without increasing the
rounds.

4.4.2 Proof of Security

We prove the security of our protocol according to the ideal/real paradigm. We design a sequence
of hybrids where we start with the real world execution and gradually modify it until the input
of the honest party is not needed. The resulting final hybrid represents the simulator for the
ideal world.

Theorem 4.4.1. Assuming the existence of a trapdoor permutation family and a k-round
parallel and 3-robust non-malleable commitment scheme, protocol Π2PC securely computes every
two-party functionality F = (F1, F2) with black-box simulation in the presence of a malicious
adversary. The round complexity of Π2PC is k′ = max(4, k + 1).

Proof. Due to the symmetric nature of our protocol, it is sufficient to prove security against the
malicious behavior of any party, say P1. We show that for every adversary A who participates
as P1 in the “real” world execution of Π2PC, there exists an “ideal” world adversary (simulator)
S such that for all inputs x, y of equal length and security parameter κ ∈ N:

{IDEALF,S(κ, x, y)}κ,x,y
c≈ {REALΠ,A(κ, x, y)}κ,x,y

We prove this claim by considering hybrid experiments H0, H1, . . . as described below. We
denote by HybridiF,Si(κ, x, y) the random variable that corresponds to the simulator’s output
in hybrid execution Hi when running against party Si that plays the role of P2 according to
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the specifications in this hybrid (where S0 refers to the honest real sender). For simplicity of
exposition, we abbreviate it to Hybridi.

We start with H0 which has access to both inputs x and y, and gradually get rid of the
honest party’s input y to reach the final hybrid.

Hybrid H0: Identical to the real execution. More specifically, H0 starts the execution of A
providing it fresh randomness and input x, and interacts with it honestly by performing
all actions of P2 with uniform randomness and input y. The output consists of A’s view.

By construction, H0 and the output of A in the real execution are identically distributed.

Hybrid H1: Identical to H0 except that this hybrid also performs extraction of A’s implicit
input x∗ from ΠWIPOK; in addition, it also extracts the “simulation trapdoor” σ from the
first three rounds (fs1, fs2, fs3) of ΠFS.12 More specifically, H1 proceeds as follows:

1. It completes the first three broadcast rounds exactly as in H0, and waits until A
either aborts or successfully completes the third round.

2. At this point, H1 proceeds to extract the witness corresponding to each proof-of-
knowledge completed in the first three rounds.
Specifically, H1 defines a cheating prover P ∗ which acts identically to H0, simulating
all messages for A, except those corresponding to (each execution of) ΠWIPOK which
are forwarded outside. It then applies the extractor of ΠWIPOK to obtain the “wit-
nesses” which consists of the following: values {(ri, ωi)}i∈[κ] which is the witness for
st1 ∧ st3, and a value (σ, ωσ) which is the simulation trapdoor for ΠFS.
If extraction fails, H1 outputs fail. Otherwise, let bi ∈ {0, 1} be such that nmi,bi

1 =
nmcom1(id1, ri;ωi). H1 defines a string x∗ = (x∗1, . . . , x∗κ) as follows:

If zi,bi = ri + r′i,bi then x
∗
i = 1− bi; otherwise x∗i = bi

3. H1 completes the final round and prepares the output exactly as H0.

Claim 1. Hybrid0 ≈s Hybrid1.

Proof sketch: This is a (completely) standard proof which we sketch here. Let p be the prob-
ability with which A completes ΠWIPOK in the third round, and let trans be the transcript.
The extractor for ΠWIPOK takes expected time poly(κ)/p and succeeds with probability
1− µ(κ). It follows that the expected running time of H1 is poly(κ) + p · poly(κ)

p = poly(κ),
and its output is statistically close to that of H0.13 �

12Recall that (fs1, fs2, fs3) contains two non-malleable commitments (to values σ1, σ2) along with proof-of-
knowledge of one of the committed values (see Appendix) using ΠWIPOK; this execution of ΠWIPOK runs in parallel
and therefore, it is possible to extract from it at the same time as x∗.

13See “witness extended emulation” in [Lin01] for full exposition.
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Hybrid H2: Identical to H1 except that this hybrid uses the simulation trapdoor (σ, ωσ) as the
witness to compute fs4 in the last round. (Recall that fs4 is the last round of an execution
of ΠWIPOK.)

It is easy to see that H2 and H1 are computationally indistinguishable due the WI property
of ΠWIPOK.

Hybrid H3: In this hybrid, we change the witness used in ΠWIPOK on behalf of the honest
party. In particular, protocol ΠWIPOK is emulated using a fake witness.

Claim 2. Hybrid2 ≈c Hybrid3.

Proof. We rely on the non-malleability with respect to 3-round protocols of the nmcom
and the witness indistinguishability property of ΠWIPOK to prove this claim. Assume, for
contradiction, that there exists a distinguisher D that distinguishes H2 and H3. We show
how this violates the robustness of nmcom. Consider the machine B(bκ), which upon
receiving a statement x, and two witnesses for x, w0 and w1, provides a ΠWIPOK proof of
the statement x using witness wb. Since ΠWIPOK is a 3-round protocol where the second
message is sent from the verifier, (x,w0, w1) can be sent with the second message from
the ΠWIPOK verifier. It follows directly from the WI property of the ΠWIPOK proof that no
(non-uniform) PPT adversary can distinguish interactions with B(0κ) and B(1κ).
Next, we construct an adversary M̃ such that the view and values that M̃ committed to
while interacting with B(0κ) and B(1κ) can be distinguished by a distinguisher D̃ that
appropriately incorporates D.
Description of M̃ : Machine M̃ proceeds in the following two phases.

• Main execution phase: M̃ incorporates a man-in-the-middle adversary A inter-
nally, and proceeds exactly as H2 by sampling all messages internally except for the
messages of ΠWIPOK. In particular, M̃ honestly emulates the left committer and right
receivers for A with the following exceptions:
1. To emulate the proof of the left interaction it externally sends B the statement
x and the witnesses w0, w1 where w1 is the “fake witness”. It next forwards the
ΠWIPOK proof from B to A.

2. In the right interactions, it externally forwards messages from A to an honest
receiver of nmcom.

• Output phase: After the first three rounds of the protocol are finished, M̃ halts by
outputting its view, denoted by VM̃ . In particular, M̃ does not continue further like
H2, it does not extract any values, and does not complete the fourth round. (In fact,
M̃ cannot complete the fourth round, since it does not have the witness.) Formally,
for i ∈ [κ], b ∈ {0, 1}, M̃ outputs VM̃ that includes the view of M̃ from the main
execution phase and the values {ũi,b} committed by M̃ in the κ sessions on the right
with tags {ĩdi} while receiving parallel commitments to {ui,b} on left with tags {idi}.

Description of D̃: Distinguisher D̃ proceeds in the following two phases.
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• Main execution phase: D̃ incorporates both M̃ and D internally, it receives as
input the view VM̃ and proceeds as follows:

1. D̃ parses VM̃ to obtain the view VA of A, the committed values {ũi,b} and con-
sequently a string σ corresponding to the “trapdoor witness.” 14

2. D̃ starts M̃ and feeds him the view VA together with the committed values and
continues the execution just like H2. It, however, does not rewind A (internal to
M̃), instead it uses σ and values in VA to complete the last round of the protocol.

• Output phase: When A halts, D̃ feeds the view VA to D and outputs whatever D
outputs.

Since M̃ , in interaction with B(0κ) (resp., B(1κ)), perfectly emulates the view of A in the
hybrid experiment H2 (resp., H3), the extracted view VA and the committed values are
identically distributed to the view of H2 (resp., H3). It follows that D̃ distinguishes the
view and the values committed to by M̃ using nmcom, which contradicts the robustness
property of nmcom. The claim follows. �

Hybrid H4: In this hybrid, we get rid of P2’s input y that is implicitly present in values {z̃i,b}
and {r̃i,b} in nmcom (but keep it everywhere else for the time being). Formally, H4 is
identical to H3 except that in round 3 it sets z̃i,b = r̃i,b + r̃′i,b for all (i, b).

Claim 3. Hybrid3 ≈c Hybrid4.

Proof. We rely on the non-malleability of nmcom to prove this claim. Assume, for contra-
diction, that there exists a distinguisher D that distinguishes H3 and H4. We show how
this violates the non-malleability property of nmcom.
The high level idea is as follows: first we define two string sequences {u0

i,b} and {u1
i,b} and

a man-in-the-middle M which incorporates A and receives non-malleable commitments to
one of these sequences in parallel. Then we define a distinguisher Dnm which incorporates
bothM and D, takes as input the value committed byM and its view, and can distinguish
which sequence was committed to M . This violates non-malleability of nmcom.
Formally, we define a man-in-middle adversary M who receives 2κ nmcom commitments
on the left and makes 2κ nmcom commitments on the right.
Description of M : Machine M proceeds in the following two phases.

• Main execution phase: M incorporates A internally, and proceeds exactly as H3
by sampling all messages internally except for the messages of nmcom corresponding
to P2. These messages are received from an outside committer as follows.
1. M samples uniformly random values {z̃i,b} and {r̃′i,b} and defines {u0

i,b} and {u1
i,b}

as:
u0
i,yi = z̃i,yi + r̃′i,yi , u0

i,yi ← {0, 1}
κ, u1

i,b = z̃i,b + r̃′i,b ∀(i, b)
14Note that, by construction, such a value is guaranteed in both sequences and w.l.o.g. can be the value in the

first nmcom.
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2. M forwards {u0
i,b} and {u1

i,b} to the outside committer who commits to one of
these sequences in parallel. M forwards these messages to A, and forwards the
message given by A corresponding to nmcom to the outside receiver.

• Output phase: After the first three rounds of the protocol are finished, M̃ halts
by outputting its view, denoted by VM . In particular, M does not continue further
like H3, it does not extract any values, and does not complete the fourth round.
(Note that M cannot complete the fourth round, since it does not have the witness.)
Formally, for i ∈ [κ], b ∈ {0, 1}, M outputs VM that includes the view of M from the
main execution phase and the values {ũi,b} committed by M in the κ sessions on the
right with tags {ĩdi} while receiving parallel commitments to {ui,b} on left with tags
{idi}.

Let {ũ0
i,b} (resp., {ũ1

i,b}) be the sequence of values committed by M with {ĩdi} when it
receives a commitment to {u0

i,b} (resp., {u1
i,b}) with {idi}.

Description of Dnm: Distinguisher Dnm proceeds in the following two phases.

• Main execution phase: Dnm incorporates both M and D internally, it receives as
input the view VM and proceeds as follows:

1. Dnm parses VM to obtain the view of VA, the committed values {ũi,b} and con-
sequently a string σ corresponding to the “trapdoor witness.”

2. Dnm startsM and feeds him the view VA together with the committed values and
continues the execution just like H3. It, however, does not rewind A (internal to
M), instead it uses σ and values in VA to complete the last round of the protocol.

• Output phase: When A halts, Dnm feeds the view VA to D and outputs whatever
D outputs.

It is straightforward to verify that if M receives commitments corresponding to {u0
i,b}

(resp., {u1
i,b} ) then the output of Dnm is identical to that of H3 (resp., H4). The claim

follows. �

Hybrid H5: Identical to H4 except that H5 changes the “inputs of the oblivious transfer” from
(Zi,0, Zi,1) to (Zi,x∗i , Zi,x∗i ). Formally, in the last round, H5 sets Wi,b = Zi,x∗i + H((z′i,b)) for
every (i, b), but does everything else as H4.

H4 and H5 are computationally indistinguishable due to the (indistinguishable) security of
oblivious transfer w.r.t. a malicious receiver. This part is identical to the proof in [KO04],
and relies on the fact that one of the two strings for oblivious transfer are obtained by
“coin tossing;” and therefore its inverse is hidden, which implies that the hardcore bits
look pseudorandom.

Hybrid H6: Identical to H5 except that now we simulate the garbled circuit and its labels for
values x∗ and F1(x∗, y). Formally, H6 starts by proceeding exactly as H5 up to round 3
except that instead of committing to correct garbled circuit and labels in round 2, it simply
commits to random values. After completing round 3, H6 extracts x∗ exactly as in H5.
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If extraction succeeds, it sends x∗ to the trusted party, receives back v1 = F1(x∗, y), and
computes ({Zi,b},GC∗)← SimGC(1κ, F1, x

∗, v1). It uses labels {Zi,x∗i } to define the values
{Wi,b} as in H5, and equivocates Cgc to obtain openings corresponding to the simulated
circuit GC∗. It then computes fs4 as before (by using the trapdoor witness (σ, ωσ)), and
constructs m4 := ({Wi,b}, fs4,GC∗, ζ). It feeds m4 to A and finally outputs A’s view and
halts.

Claim 4. Hybrid5 ≈c Hybrid6.

Proof. We claim that H5 and H6 are computationally indistinguishable. First observe
that the joint distribution of values ({Ci,blab},Cgc) and GCy (along with real openings) in H5
is indistinguishable from the joint distribution of the values ({Ci,blab},Cgc) and GC∗ (along
with equivocal openings) in H6. The two hybrids are identical except for sampling of
these values, and can be simulated perfectly given these values from outside. The claim
follows.15 �

Observe that H6 is now independent of the input y. Our simulator S is H6. This completes the
proof.

Remark 4.2. Note that robustness is sufficient but it is not necessary since what is actually
required is a non-malleable commitment robust against a specific class of protocols, i.e., 3-round
WIPOK protocols. The commitment scheme of [PPV08] is proven to be robust only against
a 3-round WIPOK based on adaptive OWFs. In particular, the authors of [PPV08] prove the
following lemma.

Lemma 4.4.1 ([PPV08]). There exists a 3-round WIPOK protocol ΠWIPOK for NP-statements
and a 2-round non-malleable commitment scheme that is robust w.r.t. to ΠWIPOK assuming the
existence of adaptive OWFs.

15 Let us note that changing the commitment in second round (from correct garbled labels/circuit to random
strings) is performed from the beginning—i.e., in the “main thread” of simulation—therefore the running time
stays expected polynomial time as in claim 4.
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Chapter 5

Secure Computation in the Tamper-Proof
Hardware Model

In this chapter we propose secure computation protocols in tamper-proof hardware model
under minimal complexities. More specifically, we present our results in [HPV16]. See Section
2.1.3.1 for a detailed overview of our contributions.

Overview We put forth a new formulation of tamper-proof hardware in the Global Universal
Composable (GUC) framework [CDPW07]. Almost all of the previous works rely on the for-
mulation by Katz [Kat07] and this formulation does not fully capture tokens in a concurrent
setting. We address these shortcomings by relying on the GUC framework where we make the
following contributions:

• We construct secure 2PC protocols for general functionalities with optimal round complex-
ity and computational assumptions using stateless tokens. More precisely, we show how
to realize arbitrary functionalities with GUC security in two rounds under the minimal
assumption of OWFs. Moreover, our construction relies on the underlying function in a
black-box way. As a corollary, we obtain feasibility of MPC with GUC-security under the
minimal assumption of OWFs.

• We then construct a 3-round MPC protocol to securely realize arbitrary functionalities with
GUC-security starting from any semi-honest secure MPC protocol. For this construction,
we require the so-called one-many commit-and-prove primitive introduced in the original
work of [CLOS02] that is round-efficient and black-box in the underlying commitment.
Using specially designed “input-delayed” protocols we realize this primitive (with a 3-
round protocol in our framework) using stateless tokens and OWFs (where the underlying
OWF is used in a black-box way).

Due to space constraints we refer to Section 2.1.3.3 for an overview of our results and techniques
in the adaptive setting. More details can be found in [HPV17].

5.1 Techniques

Our starting point for our round optimal secure two-party computation is the following technique
from [GIS+10] for an extractable commitment scheme.

Roughly speaking, in order to extract the receiver’s input, the sender chooses a function
F from a pseudorandom function family that maps {0, 1}m to {0, 1}n bits where m >> n,
and incorporates it into a token that it sends to the receiver. Next, the receiver commits to
its input b by first sampling a random string u ∈ {0, 1}m and querying the PRF token on
u to receive the value v. It sends as its commitment the string comb = (Ext(u; r) + b, r, v)
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where Ext(·, ·) is a strong randomness extractor. Now, since the PRF is highly compressing, it
holds with high probability that conditioned on v, u has very high min-entropy and therefore
Ext(u; r) + b, r statistically hides b. Furthermore, it allows for extraction as the simulator can
observe the queries made by the sender to the token and observe that queries that yields v to
retrieve u. This commitment scheme is based on one-way functions but is only extractable. To
obtain a full-fledged UC-commitment from an extractable commitment we can rely on standard
techniques (See [PW09, HV15] for a few examples). Instead, in order to obtain round-optimal
constructions for secure two-party computation, we extend this protocol directly to realize the
UC oblivious transfer functionality. A first incorrect approach is the following protocol. The
parties exchange two sets of PRF tokens. Next, the receiver commits to its bit comb using the
approach described above, followed by the sender committing to its input (coms0 , coms1) along
with an OT token that implements the one-out-of-two string OT functionality. More specifically,
it stores two strings s0 and s1, and given a single bit b outputs sb. Specifically, the code of that
token behaves as follows:

• On input b∗, u∗, the token outputs (sb, decomsb) only if comb = (Ext(u∗; r) + b∗, r, v) and
PRF(u∗) = v. Otherwise, the token aborts.

The receiver then runs the token to obtain sb and verifies if decomsb correctly decommits comsb

to sb. This simple idea is vulnerable to an input-dependent abort attack, where the token aborts
depending on the value b∗. The work of [GIS+10] provides a combiner to handle this particular
attack which we demonstrate is problematic. We describe the attack in Section 5.6. We instead
will rely on a combiner from the recent work of Ostrovsky, Richelson and Scafuro [ORS15] to
obtain a two-round GUC-OT protocol. A further overview of our techniques can be found in
each section.

GUC-secure multi-party computation protocols. In order to demonstrate feasibility, we
simply rely on the work of [IPS08] who show how to achieve GUC-secure MPC protocols in the
OT-hybrid. By instantiating the OT with our GUC-OT protocol, we obtain MPC protocols
in the tamper proof model assuming only one-way functions. While this protocol minimizes
the complexity assumptions, the round complexity would be high. In this work, we show how
to construct a 3-round MPC protocol. Our starting point is to take any semi-honest MPC
protocol in the stand-alone model and compile it into a malicious one using tokens following the
paradigm in the original work of Canetti et al. [CLOS02] and subsequent works [Pas03, Lin03b].
Roughly, the approach is to define a commit-and-prove GUC-functionality FCP and compile the
semi-honest protocol using this functionality following a GMW-style compilation.

We will follow an analogous approach where we directly construct a full-fledged F1:M
CP -

functionality that allows a single prover to commit to a string and then prove multiple statements
on the commitment simultaneously to several parties. In the token model, realizing this prim-
itive turns out to be non-trivial. This is because we need the commitment in this protocol to
be straight-line extractable and the proof to be about the value committed. Recall that, the
extractable commitment is based on a PRF token supplied by the receiver of the commitment
(and the verifier in the zero-knowledge proof). The prover cannot attest the validity of its com-
mitment (via an NP-statement) since it does not know the code (i.e. key) of the PRF. Therefore,
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any commit and prove scheme in the token model necessarily must rely on a zero-knowledge
proof that is black-box in the underlying commitment scheme. In fact, in the seminal work
of Ishai et al. [IKOS09] they showed how to construct such protocols that have been exten-
sively used in several works where the goal is to obtain constructions that are black-box in the
underlying primitives. Following this approach and solving its difficulties that appear in the
tamper-proof hardwire model, we can compile a T -round semi-honest secure MPC protocol to a
O(T )-round protocol. Next, to reduce the rounds of the computation we consider the approach
of Garg et al. [GGHR14] who show how to compress the round complexity of any MPC protocol
to a two-round GUC-secure MPC protocol in the CRS model using obfuscation primitives.

In more detail, in the first round of the protocol in [GGHR14], every party commits to its
input along with its randomness. The key idea is the following compiler used in the second
round: it takes any (interactive) underlying MPC protocol, and has each party obfuscate their
“next-message” function in that protocol, providing one obfuscation for each round. To ensure
correctness, zero-knowledge proofs are used to validate the actions of each party w.r.t the com-
mitments made in the first step. Such a mechanism is also referred to as a commit-and-prove
strategy. This enables each party to independently evaluate the obfuscation one by one, gener-
ating messages of the underlying MPC protocol and finally obtain the output. The observation
here is that party Pi’s next-message circuit for round j in the underlying MPC protocol depends
on its private input xi and randomness ri (which are hard-coded in the obfuscation) and on
input the transcript of the communication in the first j − 1 rounds outputs its message for the
next round.

To incorporate this approach in the token model, we can simply replace the obfuscation
primitives with tokens. Next, to employ zero-knowledge proofs via a black-box construction,
we require a zero-knowledge protocol that allows commitment of a witness via tokens at the
beginning of the protocol and then in a later step prove a statement about this witness where
the commitment scheme is used in a “black-box” way. A first idea here would be to compile
using the zero-knowledge protocol of [IKOS09] that facilitate such a commit-and-prove paradigm.
However, as we explain later this would cost us in round-complexity. Instead we will rely on
so-called input-delayed proofs [LS90] that have recently received much attention [CPS+16a,
CPS+16b, HV16]. In particular, we will rely on the recent work of [HV16] who shows how
to construct the so-called “input-delay” commit-and-prove protocols which allow a prover to
commit a string in an initial commit phase and then prove a statement regarding this string at
a later stage where the input statement is determined later. However, their construction only
allows for proving one statement regarding the commitment. One of our technical contributions
is to extend this idea to allow multiple theorems and further extend it so that a single prover can
prove several theorems to multiple parties simultaneously. This protocol will be 4-round and we
show how to use this protocol in conjunction with the Garg et al.’s round collapsing technique.

5.2 Modeling Tamper-Proof Hardware in the GUC Framework

In this section we describe our model and give our rationale for our approach. We provide a
brief discussion on the Universal Composability (UC) framework [Can01], UC with joint state
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[CR03] (JUC) and Generalized UC [CDPW07] (GUC). For more details, we refer the reader to
the original works and the discussion in [CJS14].

Basic UC. Introduced by Canetti in [Can01], the Universal Composability (UC) framework
provides a framework to analyse security of protocols in complex network environments in a
modular way. One of the fundamental contributions of this work was to give a definition that
will allow to design protocols and demonstrate security by “locally” analyzing a protocol but
guaranteeing security in a concurrent setting where security of the protocol needs to be intact
even when it is run concurrently with many instances of arbitrary protocols. Slightly more
technically, in the UC-framework, to demonstrate that a protocol Π securely realizes an ideal
functionality F , we need to show that for any adversary A in the real world interacting with
protocol Π in the presence of arbitrary environments Z, there exists an ideal adversary S such
that for any environment Z the view of an interaction with A is indistinguishable from the view
of an interaction with the ideal functionality F and S.

Unfortunately, soon after its inception, a series of impossibility results [CF01, CKL06,
Lin03b] demonstrated that most non-trivial functionalities cannot be realized in the UC-
framework. Most feasibility results in the UC-framework relied on some sort of trusted setup
such as the common reference string (CRS) model [CF01], tamper-proof model [Kat07] or re-
laxed security requirements such as super-polynomial simulation [Pas03, PS04, BS05a]. When
modeling trusted setup such as the CRS model, an extension of the UC-framework considers the
G-hybrid model where “all” real-world parties are given access to an ideal setup functionality G.
In order for the basic composition theorem to hold in such a G-hybrid model, two restrictions
have to be made. First, the environment Z cannot access the ideal setup functionality directly;
it can only do so indirectly via the adversary. In some sense, the setup G is treated as “local” to a
protocol instance. Second, two protocol instances of the same or different protocol cannot share
“state” for the UC-composition theorem to hold. Therefore, a setup model such as the CRS
in the UC-framework necessitates that each protocol uses its own local setup. In other words,
an independently sampled reference string for every protocol instance. An alternative approach
that was pursued in a later work was to realize a multi-version of a functionality and proved
security of the multi-version using a single setup. For example, the original feasibility result of
Canetti, Lindell, Ostrovsky and Sahai [CLOS02] realized the FMCOM-functionality which is the
multi-version of the basic commitment functionalityFCOM in the CRS model.

JUC. Towards accommodating a global setup such as the CRS for multiple protocol instances,
Canetti and Rabin [CR03] introduced the Universal Composition with Joint State (JUC) frame-
work. Suppose we want to analyze several instances of protocol Π with an instance G as common
setup, then at the least, each instance of the protocol must share some state information regard-
ing G (e.g., the reference string in the CRS model). The JUC-framework precisely accommodates
such a scenario, where a new composition theorem is proven, that allows for composition of pro-
tocols that share some state. However, the JUC-model for the CRS setup would only allow the
CRS to be accessible to a pre-determined set of protocols and in particular still does not allow
the environment to directly access the CRS.
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GUC. For most feasibility results in the (plain) CRS model both in the UC and JUC frame-
work, the simulator S in the ideal world needed the ability to “program” the CRS. In particular,
it is infeasible to allow the environment to access the setup reference string. As a consequence,
we can prove security only if the reference string is privately transmitted to the protocols that
we demand security of and cannot be made publicly accessible. The work of Canetti, Pass, Dodis
and Walfish [CDPW07] introduced the Generalized UC-framework to overcome this shortcoming
in order to model the CRS as a global setup that is publicly available. More formally, in the
GUC-framework, a global setup G is accessible by any protocol running in the system and in
particular allows direct access by the environment. This, in effect, renders all previous protocols
constructed in the CRS model not secure in the GUC framework as the simulator loses the pro-
grammability of the CRS. In fact, it was shown in [CDPW07] that the CRS setup is insufficient
to securely realize the ideal commitment functionality in the GUC-framework. More generally,
they show that any setup that simply provides only “public” information is not sufficient to re-
alize GUC-security for most non-trivial functionalities. They further demonstrated a feasibility
in the Augmented CRS model, where the CRS contains signature keys, one for each party and
a secret signing key that is not revealed to the parties, except if it is corrupt, in which case the
secret signing key for that party is revealed.

As mentioned before, the popular framework to capture the tamper-proof hardware is the
one due to [Kat07] who defined the FWRAP-functionality in the UC-framework. In general,
in the token model, the two basic advantages that the simulator has over the adversary is
“observability” and “programmability”. Observability refers to the ability of the simulator to
monitor all queries made by an adversary to the token and programmability refers to the ability
to program responses to the queries in an online manner. In the context of tokens, both these
assumptions are realistic as tamper-proof tokens do provide both these abilities in a real-world.
However, when modeling tamper proof hardware tokens in the UC-setting, both these properties
can raise issues as we discuss next.

Apriori, it is not clear why one should model the tamper proof hardware as a global func-
tionality. In fact, the tokens are local to the parties and it makes the case for it not to be
globally accessible. Let us begin with the formulation by Katz [Kat07] who introduced the
FWRAP-functionality (see Figure 5.1 for the stateless variant). In the real world the creator or
sender of a token specifies the code to be incorporated in a token by sending the description
of a Turing machine M to the ideal functionality. The ideal functionality then emulates the
code of M to the receiver of the token, only allowing black-box access to the input and output
tapes of M . In the case of stateful tokens, M is modeled as an interactive Turing machine while
for stateless tokens, standard Turing machines would suffice. Slightly more technically, in the
UC-model, parties are assigned unique identifiers PID and sessions are assigned identifiers sid.
In the tamper proof model, to distinguish tokens, the functionality accepts an identifier mid
when a token is created. More formally, when one party PIDi creates a token with program
M with token identifier mid and sends it to another party PIDj in session sid, then the FWRAP

records the tuple (PIDi,PIDj ,mid,M). Then whenever a party with identifier PIDj sends a query
(Run, sid,PIDi,mid, x) to the FWRAP-functionality, it first checks whether there is a tuple of the
form (·,PIDj ,mid, ·) and then runs the machine M in this tuple if one exists.

In the UC-setting (or JUC), to achieve any composability guarantees, we need to realize
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Functionality FStateless
WRAP

Functionality FStateless
WRAP is parameterized by a polynomial p(·) and an implicit security parameter

κ.

Create. Upon receiving (Create, sid,PIDi,PIDj ,mid,M) from P1, where M is a Turing ma-
chine, do:

1. Send (Create,PIDi,PIDj ,mid) to P2.
2. Store (PIDi,PIDj ,mid,M).

Execute. Upon receiving (Run, sid,PIDi,mid, x) from P2, find the unique stored tuple
(PIDi,PIDj ,mid,M). If no such tuple exists, do nothing. Run M(x) for at most p(κ)
steps, and let out be the response (out = ⊥ if M does not halt in p(k) steps). Send
(PIDi,PIDj ,mid, out) to P2.

Figure 5.1: The ideal functionality for stateless tokens [Kat07].

the multi-use variants of the specified functionality and then analyze the designed protocol in
a concurrent man-in-the-middle setting. In such a multi-instance setting, it is reasonable to
assume that an adversary that receives a token from one honest party in a left interaction can
forward the token to another party in a right interaction. Unfortunately, the FWRAP-functionality
does not facilitate such a transfer.

Let us modify FWRAP to accommodate transfer of tokens by adding a special “transfer”
query that allows a token in the possession of one party to be transferred to another party.
Since protocols designed in most works do not explicitly prove security in a concurrent man-
in-the-middle setting, such a modification renders the previous protocols designed in FWRAP

insecure. For instance, consider the commitment scheme discussed in the introduction based on
PRF tokens. Such a scheme would be insecure as an adversary can simply forward the token
from the receiver in a right interaction to the sender in a left interaction leading to a malleable
commitment.

In order to achieve security while allowing transferability we need to modify the tokens
themselves in such a way to be not useful in an execution different from where it is supposed
to be used. If every honestly generated token admits only queries that are prefixed with the
correct session identifier then transferring the tokens created by one honest party to another
honest party will be useless as honest parties will prefix their queries with the right session and
the honestly generated tokens will fail to answer on incorrect session prefixes. This is inspired
by an idea in [CJS14], where they design GUC-secure protocols in the Global Random Oracle
model [CJS14]. As such, introducing transferrability naturally requires protocols to address the
issue of non-malleability.

While this modification allows us to model transferrability, it still requires us to analyze
protocols in a concurrent man-in-the-middle setting. In order to obtain a more modular defini-
tion, where each protocol instance can be analyzed in isolation we need to allow the token to
be transferred from the adversary to the environment. In essence, we require the token to be
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somewhat “globally” accessible and this is the approach we take.

5.2.1 The Global Tamper-Proof Model

A natural first approach would be to consider the same functionality in the GUC-framework
and let the environment to access the FWRAP-functionality. This is reasonable as an environment
can have access to the tokens via auxiliary parties to whom the tokens were transferred to.
However, naively incorporating this idea would deny “observability” and “programmability”
to the simulator as all adversaries can simply transfer away their tokens the moment they
receive them and let other parties make queries on their behalf. Indeed, one can show that the
impossibility result of [CKS+14] extends to this formulation of the tokens (at least if the code
of the token is treated in a black-box manner).1 A second approach would be to reveal to the
simulator all queries made to the token received by the adversary even if transferred out to any
party. However, such a formulation would be vulnerable to the following transferring attack. If
an adversary received a token from one session, it can send it as its token to an honest party in
another session and now observe all queries made by the honest party to the token. Therefore
such a formulation of tokens is incorrect.

Our formulation will accommodate transferrability while still guaranteeing observability to
the simulator. In more detail, we will modify the definition of FWRAP so that it will reveal to
the simulator all “illegitimate” queries made to the token by any other party. This approach is
analogous to the one taken by Canetti, Jain and Scafuro [CJS14] where they model the Global
Random Oracle Model and are confronted by a similar issue; here queries made to a globally
accessible random oracle via auxiliary parties by the environment must be made available to the
simulator while protecting the queries made by the honest party. In order to define “legitimate”
queries we will require that all tokens created by an honest party, by default, will accept an
input of the form (sid, x) and will respond with the evaluation of the embedded program M on
input x, only if sid = sid, where sid corresponds to the session where the token is supposed to
be used, i.e. the session where the honest party created the token. Furthermore, whenever an
honest party in session sid queries a token it received on input x, it will prefix the query with
the correct session identifier, namely issue the query (sid, x). An illegitimate query is one where
the sid prefix in a query differs from the session identifier from which the party is querying from.
Every illegitimate query will be recorded by our functionality and will be disclosed to the party
whose session identifier is actually sid.

More formally, the FgWRAP-functionality is parameterized by a polynomial p(·) which is the
time bound that the functionality will exercise whenever it runs any program. The functionality
admits the following queries:

Creation Query: This query allows one party P1 to create and send a token to another party
P2 by sending the query (Create, sid, P1, P2,mid,M) where M is the description of the

1Informally, the only advantage that remains for the simulator is to see the code of the tokens created by the
adversary. This essentially reduces to the case where tokens are sent only in one direction and is impossible due
to a result of [CKS+14] when the code is treated as a black-box.
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machine to be embedded in the token, mid is a unique identifier for the token and sid is
the session identifier. The functionality records (P2, sid,mid,M).2

Transfer Query: We explicitly provide the ability for parties to transfer tokens to other parties
that were not created by them (eg, received from another session). Such a query will only
be used by the adversary in our protocols as honest parties will always create their own
tokens. When a transfer query of the form (transfer, sid, P1, P2,mid) is issued, the tuple
(P1, sid,mid,M) is erased and a new tuple (P2, sid,mid,M) is created where sid is the
identifier of the session where it was previously used.

Execute Query: To run a token the party needs to provide an input in a particular format.
All honest parties will provide the input as x = (sid, x′) and the functionality will run M
on input x and supply the answer. In order to achieve non-malleability, we will make sure
in all our constructions that tokens generated by honest parties will respond to a query
only if it contains the correct sid.

Retrieve Query: This is the important addition to our functionality following the approach
taken by [CJS14]. FgWRAP-functionality will record all illegitimate queries made to a token.
Namely for a token recorded as the tuple (P2, sid,mid,M) an illegitimate query is of the
form (sid, x) where sid 6= sid and such a query will be recorded in a set Qsid that will be
made accessible to the receiving party corresponding to sid.

A formal description of the ideal functionality FgWRAP is presented in Figure 5.2. We em-
phasize that our formulation of the tamper-proof model will now have the following benefits:

1. It overcomes the shortcomings of the FWRAP-functionality as defined in [Kat07] and used
in subsequent works. In particular, it allows for transferring tokens from one session to
another while retaining “observability”.

2. Our model allows for designing protocols in the UC-framework and enjoys the composition
theorem as it allows the environment to access the token either directly or via other parties.

3. Our model explicitly rules out “programmability” of tokens. We remark that it is (po-
tentially) possible to explicitly provide a mechanism for programmability in the FgWRAP-
functionality. We chose to not provide such a mechanism so as to provide stronger com-
posability guarantees.

4. In our framework, we can analyze the security of a protocol in isolation and guarantee
concurrent multi-instance security directly using the GUC-composition theorem. More-
over, it suffices to consider a “dummy” adversary that simply forwards the environment
everything (including the token).

2We remark here that the functionality does not explicitly store the PID of the creator of the token. We made
this choice since the simulator in the ideal world will create tokens for itself which will serve as a token created
on behalf of an honest party.
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An immediate consequence of our formulation is that it renders prior works such as [Kat07,
CGS08, DKM11, DKMN15a] that rely on the programmability of the token insecure in our
model. The works of [GIS+10, CKS+14] on the other hand can be modified and proven secure
in the FgWRAP-hybrid as they do not require the tokens to be programmed.

Functionality FgWRAP

Parameters: Polynomial p(·).

Create. Upon receiving (Create, sid, P1, P2,mid,M) from P1, where M is a Turing machine,
do:

1. Send (Receipt, sid, P1, P2,mid) to P2.
2. Store (P2, sid,mid,M).

Execute. Upon receiving (Run, sid,mid, x) from P2, find the unique stored tuple
(P2, sid,mid,M). If such a tuple does not exist, do nothing. Otherwise, interpret
x = (sid, x′) and run M(x) for at most p(κ) steps, and let out be the response (out = ⊥
if M does not halt in p(k) steps). Send (sid, P2,mid, out) to P2.
Handling Illegal Queries: If sid 6= sid, then add (x′, out,mid) to the list Qsid that is
initialized to be empty.

Transfer. Upon receiving (transfer, sid, P1, P2,mid) from P1, find the unique stored tuple
(P1, sid,mid,M). If no such tuple exists, do nothing. Otherwise,

1. Send (Receipt, sid, P1, P2,mid) to P2.
2. Store (P2, sid,mid,M). Erase (P1, sid,mid,M).

Retrieve Queries: Upon receiving a request (retreive, sid) from a party P2, return the list
Qsid of illegitimate queries.

Figure 5.2: [HPV16] The global stateless token functionality.

We now provide the formal definition of UC-security in the Global Tamper-Proof model.

Definition 5.1. (GUC security in the global tamper-proof model) Let F be an ideal
functionality and let π be a multi-party protocol. Then protocol π GUC realizes F in FgWRAP-
hybrid model, if for every uniform PPT hybrid-model adversary A, there exists a uniform PPT
simulator S, such that for every non-uniform PPT environment Z, the following two ensembles
are computationally indistinguishable,{

viewFgWRAP
π,A,Z (κ)

}
κ∈N

c≈
{
viewFgWRAP

F ,S,Z (κ)
}
κ∈N.

5.3 Preliminaries in the Tamper-Proof Hardware Model
Basic notations. We denote the security parameter by κ. We say that a function µ : N→ N
is negligible if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) <
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1
p(κ) . We use the abbreviation PPT to denote probabilistic polynomial-time. We specify next
the definition of computationally indistinguishable and statistical distance.

Definition 5.2. Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribu-
tion ensembles. We say that X and Y are computationally indistinguishable, denoted X c≈ Y , if
for every PPT machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently
large κ’s, ∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]

∣∣ < 1
p(κ) .

Definition 5.3. Let Xκ and Yκ be random variables accepting values taken from a finite domain
Ω ⊆ {0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) = 1
2
∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ).
We say that Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

5.3.1 Pseudorandom Functions

Informally speaking, a pseudorandom function (PRF) is an efficiently computable function that
looks like a truly random function to any PPT observer. Namely,

Definition 5.4 (Pseudorandom function ensemble). Let F = {PRFκ}κ∈N where for every κ,
PRFκ : {0, 1}κ × {0, 1}m → {0, 1}l is an efficiently computable ensemble of keyed functions. We
say that F = {PRFκ}κ∈N is a pseudorandom function ensemble if for every PPT machine D,
there exists a negligible function negl(·) such that for all sufficiently large κ’s,

|Pr[DPRFκ(k,·)(1κ)] = 1− Pr[Dfκ(1κ) = 1]| ≤ negl(κ),

where k is picked uniformly from {0, 1}κ and fκ is chosen uniformly at random from the set
of functions mapping m-bit strings into l-bit strings. We sometimes omit κ from our notation
when it is clear from the context.

5.3.2 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender P1, to commit itself to a
value while keeping it secret from the receiver P2 (this property is called hiding). Furthermore,
in a later stage when the commitment is opened, it is guaranteed that the “opening” can yield
only a single value determined in the committing phase (this property is called binding). In this
work, we consider commitment schemes that are statistically binding, namely while the hiding
property only holds against computationally bounded (non-uniform) adversaries, the binding
property is required to hold against unbounded adversaries. Formally,

Definition 5.5 (Commitment schemes). A PPT machine Com = 〈S,R〉 is said to be a non-
interactive commitment scheme if the following two properties hold.
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Computational hiding: For every (expected) PPT machine P2
∗, it holds that the following

ensembles are computationally indistinguishable.

• {viewP2∗

Com(m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

• {viewP2∗

Com(m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where viewR∗Com(m, z) denotes the random variable describing the output of P2
∗ after re-

ceiving a commitment to m using Com.

Statistical binding: For any (computationally unbounded) malicious sender P1
∗ and auxiliary

input z, it holds that the probability that there exist valid decommitments to two different
values for a view v, generated with an honest receiver while interacting with P1

∗(z) using
Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive perfectly
binding commitment schemes can be constructed based on one-way permutation, whereas two-
round statistically binding commitment schemes can be constructed based on one-way func-
tions [Nao91]. To set up some notations, we let comm ← Com(m; rm) denote a commitment
to a message m, where the sender uses uniform random coins rm. The decommitment phase
consists of the sender sending the decommitment information decomm = (m, rm) which contains
the message m together with the randomness rm. This enables the receiver to verify whether
decomm is consistent with the transcript comm. If so, it outputs m; otherwise it outputs ⊥. For
simplicity of exposition, in the sequel, we will assume that random coins are an implicit input
to the commitment functions, unless specified explicitly.

Definition 5.6 (Trapdoor commitment schemes). Let Com = (P1, P2) be a statistically binding
commitment scheme. We say that Com is a trapdoor commitment scheme is there exists an
expected PPT oracle machine S = (S1,S2) such that for any PPT P2

∗ and all m ∈ {0, 1}κ, the
output (τ, w) of the following experiments is computationally indistinguishable:

- an honest sender P1 interacts with P2
∗ to commit to m, and then opens the commitment: τ

is the view of P2
∗ in the commit phase, and w is the message P1 sends in the open phase.

- the simulator S generates a simulated view τ for the commit phase, and then opens the
commitment to m in the open phase: formally (τ, state)← SP2∗

1 (1κ), w ← S2(state,m).

5.3.3 Randomness Extractors

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]).

Definition 5.7 (Extractors). A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-strong
extractor if for all pairs of random variables (X, I) such that X ∈ {0, 1}n and H∞(X|I) ≥ k it
holds that

SD((Ext(X,S), S, I), (Um, S, I)) ≤ ε,

where S is uniform over {0, 1}t and Um is the uniform distribution over {0, 1}m.
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The Leftover Hash Lemma shows how to explicitly construct an extractor from a family of
pairwise independent functions H. The extractor uses a random hash function h ← H as its
seed and keeps this seed in the output of the extractor.

Theorem 5.3.1 (Leftover Hash Lemma). If H = {h : {0, 1}n → {0, 1}m} is a pairwise indepen-
dent family where m = n− 2 log 1

ε , then Ext(x, h) = (h, h(x)) is a strong (n, ε)-extractor.

In this work we will consider the case where m = 1 and n ≥ 2κ + 1 where κ is the security
parameter. This yields ε = 2−

2κ+1−1
2 = 2−κ.

5.3.4 Hardcore Predicates

Definition 5.8 (Hardcore predicate). Let f : {0, 1}κ → {0, 1}∗ and H : {0, 1}κ → {0, 1} be a
polynomial-time computable functions. We say H is a hardcore predicate of f , if for every PPT
machine A, there exists a negligible function negl(·) such that

Pr[x← {0, 1}κ; y = f(x) : A(1κ, y) = H(x)] ≤ 1
2 + negl(κ).

An important theorem by Goldreich and Levin [GL89] states that if f is a one-way function
over {0, 1}κ then the one-way function f ′ over {0, 1}2κ, defined by f ′(x, r) = (f(x), r), admits
the following hardcore predicate b(x, r) = 〈x, r〉 = Σxiri mod 2, where xi, ri is the ith bit of x, r
respectively. In the following, we refer to this predicate as the GL bit of f . We will use the
following theorem that establishes the list-decoding property of the GL bit.

Theorem 5.3.2 ([GL89]). There exists a PPT oracle machine Inv that on input (κ, ε) and
oracle access to a predictor PPT B, runs in time poly(κ, 1

ε ), makes at most O(κ2

ε2 ) queries to B
and outputs a list L with |L| ≤ 4κ

ε2 such that if

Pr[r ← {0, 1}κ : B(r) = 〈x, r〉] ≥ 1
2 + ε

2

then
Pr[L← InvB(κ, ε) : x ∈ L] ≥ 1

2 .

5.3.5 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of
whom in a sharing phase receive a share (or piece) of the secret. In its simplest form, the goal
of secret-sharing is to allow only subsets of players of size at least t+ 1 to reconstruct the secret.
More formally a t + 1-out-of-n secret sharing scheme comes with a sharing algorithm that on
input a secret s outputs n shares s1, . . . , sn and a reconstruction algorithm that takes as input
((si)i∈S , S) where |S| > t and outputs either a secret s′ or ⊥. In this work, we will use the
Shamir’s secret sharing scheme [Sha79] with secrets in F = GF (2κ). We present the sharing and
reconstruction algorithms below:
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Sharing algorithm: For any input s ∈ F, pick a random polynomial f(·) of degree t in the
polynomial-field F[x] with the condition that f(0) = s and output f(1), . . . , f(n).

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t,
compute a polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using
Lagrange interpolation where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j
i− j

.

Finally the reconstruction algorithm outputs g(0).

We will additionally rely on the following property of secret-sharing schemes. To this end, we
view the Shamir secret-sharing scheme as a linear code generated by the following n × (t + 1)
Vandermonde matrix

A =


1 12 · · · 1t
1 22 · · · 2t
...

...
...

...
1 n2 · · · nt


More formally, the shares of a secret s that are obtained via a polynomial f in the Shamir
scheme, can be obtained by computing Ac where c is the vector containing the coefficients of
f . Next, we recall that for any linear code A, there exists a parity check matrix H of dimension
(n− t−1)×n which satisfies the equation HA = 0(n−t−1)×(t+1), i.e. the all 0’s matrix. We thus
define the linear operator φ(v) = Hv for any vector v. Then it holds that any set of shares s is
valid if and only if it satisfies the equation φ(s) = 0n−t−1.

The authors in [DZ13] were the first to propose an algorithm for verifying membership in (bi-
nary) codes, i.e., verifying the product of Boolean matrices in quadratic time with exponentially
small error probability, while previous methods only achieved constant error.

5.4 Two-Round Oblivious Transfer in the Stand-Alone Model

5.4.1 Building Blocks

Trapdoor commitment schemes. A core building block of our protocol is a trapdoor com-
mitment scheme TCom (cf. Definition 5.6) introduced by Pass and Wee in [PW09]. In Figure 5.3
we describe their 4-round trapdoor commitment scheme that is based on one-way permutations.
In particular, the protocol comprises a 4-round challenge-response protocol where the receiver
commits to its challenge in the first message (using a non-interactive perfectly binding commit-
ment scheme). The knowledge of the receiver’s challenge enables the simulator to cheat in the
commit phase and equivocate the committed message into any bit (this notion of “look ahead”
trapdoor commitment is borrowed from the area of zero-knowledge proofs).

More specifically, the trapdoor commitment scheme TCom, described in Figure 5.3, proceeds
as follows. In order to commit to a bit m the sender commits to a matrix M of size 2 × 2,
so that m is split into two shares which are committed within the two rows of M . Next, the
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receiver sends a challenge bit e where the sender must open the two commitments that lie in the
eth column (and must correspond to the same share of m, thus it is easy to verify correctness).
Later, in the decommit phase the sender opens the values to a row of his choice enabling the
receiver to reconstruct m. Note that if the sender knows the challenge bit in advance it can
commit to two distinct bits by making sure that one of the columns has different bits. In order
to decrease the soundness error this protocol is repeated multiple times in parallel. In this paper
we implement the internal commitment of Pass and Wee using a statistical hiding commitment
scheme that is based on pseudorandom functions; see details below.

Non-interactive commitment schemes. Our construction further relies on a non-
interactive perfectly binding commitment scheme that is incorporated inside the sender’s token
TKcom

P1 . Such commitments can be build based on the existence of one-way permutations. Im-
portantly, it is possible to relax our assumptions to one-way functions by relying on a two-round
statistically binding commitment scheme [Nao91], and allowing the token TKcom

P1 to take an
additional input that will serve as the first message of the commitment scheme. Overall, that
implies that we only need to assume one-way functions. For clarity of presentation, we use a
non-interactive commitment scheme that is based on one-way permutations; see Section 5.4.2.1
for more details.

5.4.2 Our Protocol

We are now ready to introduce our first protocol that securely computes the functionality FOT :
((s0, s1), b) 7→ (⊥, sb) in the plain model, using only two rounds and a one-way tokens transfer
phase that involves sending a set of tokens from the sender to the receiver in one direction.
We begin with a protocol that comprises of three rounds where the first round only transfers
tokens from one party and then later modify it to obtain a two-round protocol where the tokens
are reusable and need to be transferred once at the beginning of the protocol. For simplicity
of exposition, in the sequel we will assume that the random coins are an implicit input to the
commitments and the extractor, unless specified explicitly. Informally, in the one-way tokens
transfer phase the sender sends two types of tokens. The PRF tokens {TKPRF,l

P1
}l∈[4κ2] are used

by the receiver to commit to its input b using the shares {bi}i∈[κ]. Namely, the number of tokens
equals 4κ (which denote the number of tokens per Pass-Wee commitment), times κ which is
the number of the receiver’s input shares. Whereas, the commitment token TKCom

P1 is used by
the receiver to obtain the commitments of the sender in order to mask the values {(si0, si1)}i∈[κ]
which are later used to conceal the sender’s real inputs to the oblivious transfer. Next, the
receiver shares its bit b into b1, . . . , bκ such that b =

⊕κ
i=1 bi and commits to these shares using

the Pass-Wee trapdoor commitment scheme. Importantly, we consider a slightly variant of the
Pass-Wee commitment scheme where we combine the last two steps of the commit phase with
the decommit phase. In particular, the final verification in the commit phase is included as part
of the decommitment phase and incorporated into the sender’s tokens {TKi} that are forwarded
in the second round. The sender further sends the commitments to its inputs s0, s1 computed
based on hardcore predicates for the (s0

i , s
1
i ) values and a combiner specified as follows. The

sender chooses z1, . . . , zκ and ∆ at random, where
⊕κ

i=1 zi masks s0 and
⊕κ

i=1 zi + ∆ masks s1.
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Trapdoor Commitment Scheme TCom [PW09]

The commitment scheme TCom uses a statistically binding commitment scheme Com and runs
between sender P1 and receiver P2.

Input: P1 holds a message m ∈ {0, 1}.

Commit Phase:

P2 → P1: P2 chooses a challenge e = e1, . . . , eκ ← {0, 1} and sends the commitment
come ← Com(e) to P1.

P1 → P2: P1 proceeds as follows:
1. P1 chooses η1, . . . , ηκ ← {0, 1}κ.
2. For all i ∈ [κ], P1 commits to the following matrix: com00

ηi com01
m+ηi

com10
ηi com11

m+ηi

 =

 Com(ηi) Com(m+ ηi)

Com(ηi) Com(m+ ηi)


P2 → P1: P2 sends decome of the challenge e = e1, . . . , eκ ← {0, 1} to P1.
P1 → P2: P1 proceeds as follows:

1. For all i ∈ [κ], P1 sends the decommitments of the column
(decom0ei

(ei·m)+ηi , decom1ei
(ei·m)+ηi).

2. For all i ∈ [κ], P2 checks that the decommitments are valid and that
decom0ei

(ei·m)+ηi = decom1ei
(ei·m)+ηi .

Decommit Phase:

1. For all i ∈ [κ], P1 chooses r = r1, . . . , rκ ← {0, 1} and sends the bit m and the
decommitments of the row (decomri0

ηi , decomri1
ri+ηi).

2. For i ∈ [κ], P2 checks that the decommitments are valid and that m = decomri0
ηi +

decomri1
ri+ηi .

Figure 5.3: Trapdoor commitment scheme

Finally, the sender respectively commits to each zi and zi+ ∆ using the hardcore bits computed
on the (s0

i , s
1
i ) values. More precisely, it sends

s′0 = w + s0 and s′1 = w + ∆ + s1

∀ i ∈ [κ] w0
i = zi + H(s0

i ) and w1
i = zi + ∆ + H(s1

i )

where w =
⊕κ
i=1 zi. If none of the tokens abort, the receiver obtains sbii for all i ∈ [κ] and

computes sb = s′b+(wb1
1 +H(sb1

1 )) · · ·+(wbκκ +H(sbκκ )). If any of the OT tokens, i.e. TKi, aborts
then the receiver assumes a default value for sb.
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Remark 5.1. In [GIS+10], it is pointed out by Goyal et al. in Footnote 12 that assuming a
default value in case the token aborts might cause an input-dependent abort. However, this
problem arises only in their protocol as a result of the faulty simulation. In particular, our
protocol is not vulnerable to this since the simulator for a corrupted sender follows the honest
receiver’s strategy to extract both the inputs via (statistical) equivocation. In contrast, the
simulation in [GIS+10] runs the honest receiver’s strategy for a randomly chosen input in a main
execution to obtain the (adversarially corrupted) sender’s view and uses a “receiver-independent”
strategy to extract the sender’s inputs. For more details, see Section 5.6.

Remark 5.2. In Footnote 10 of [GIS+10], Goyal et al. explain why it is necessary that the
receiver run the token implementing the one-time memory functionality (OTM) in the prescribed
round. More precisely, they provide a scenario where the receiver can violate the security of a
larger protocol in the OT-hybrid by delaying when the token implementing the OTM is executed.
Crucial to this attack is the ability of the receiver to run the OTM token on different inputs.
In order to prevent such an attack, the same work incorporates a mechanism where the receiver
is forced to run the token in the prescribed round. We remark here that our protocol is not
vulnerable to such an attack. We ensure that there is only one input on which the receiver can
query the OTM token and this invalidates the attack presented in [GIS+10].

Next, we describe our OT protocol ΠOT in the FgWRAP-hybrid with sender P1 and receiver
P2. Let (1) Com be a non-interactive perfectly binding commitment scheme, (2) TCom =
{TCmsg1,TCmsg2,TCmsg3} denote the three messages exchanged in the commit phase of the
trapdoor commitment scheme, (3) F, F ′ be two PRF families that map {0, 1}5κ → {0, 1}κ and
{0, 1}κ → {0, 1}p(κ), respectively (4) H denote a hardcore bit function and (5) Ext : {0, 1}5κ ×
{0, 1}d → {0, 1} denote a randomness extractor where the source has length 5κ and the seed
has length d (for simpler exposition we drop the randomness in the description below).

Protocol 1. Protocol ΠOT - OT with stateless tokens in the plain model.

• Input: P1 holds two strings s0, s1 ∈ {0, 1}κ and P2 holds a bit b. The common input is sid.

• The Protocol:

P1 → P2: The sender creates two sets of tokens as follows and sends them to the receiver.
1. {TKPRF,l

P1
}l∈[4κ2]: P1 chooses 4κ2 random PRF keys {γl}l∈[4κ2] for family F . Let PRFγl :

{0, 1}5κ → {0, 1}κ denote the pseudorandom function. For all l ∈ [4κ2], P1 creates a
token TKPRF,l

P1
by sending (Create, sid, P1, P2,midl,M1) to FgWRAP, that on input (sid, x)

outputs PRFγl(x), where M1 is the functionality; if sid 6= sid the token aborts.
2. TKCom

P1
: P1 chooses a random PRF′ key γ′ for family F ′. Let PRF′γ′ : {0, 1}κ →

{0, 1}p(κ) denote the pseudorandom function. P1 creates token TKCom
P1

by sending
(Create, sid, P1, P2,midl+1,M2) to FgWRAP where M2 is the functionality that on input
(sid, tcombi , i) proceeds as follows:
– For the case where sid 6= sid the token aborts;
– If i = 0: compute V = PRF′γ′(0κ), parse V as e‖r and output come ← Com(e; r).
– Otherwise: compute V = PRF′γ′(tcombi‖i), parse V as si0‖si1‖r0‖r1, compute

comsi
b
← Com(sib; rb) for b = {0, 1}, and output comsi0

, comsi1
.
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We remark that if V is longer than what is required in either case, we simply truncate
it to the appropriate length.

P2 → P1:
1. P2 sends (Run, sid,midl+1, (0κ, 0)) and receives come and interprets it as TCmsg1.
2. For all i ∈ [κ] and j ∈ [4κ], P2 sends (Run, sid,mid1l , u

j
i ) where u

j
i ← {0, 1}5κ and receives

vji = TKPRF,l
P1

(uji ) (where l ∈ [4κ2] is an encoding of the pair (i, j)). If the token aborts
the receiver aborts.

3. P2 chooses κ − 1 random bits b1, . . . , bκ−1 and sets bκ such that b =
⊕κ

i=1 bi. For all
i ∈ [κ], it commits to bi be setting tcombi = (M i

1, . . . ,M
i
κ). In particular, ∀j ∈ [κ] the

receiver picks ηi,j ← {0, 1}κ as per Figure 5.3 and computes:

M i
j =

 (Ext(u4j−3
i ) + ηi,j , v

4j−3
i ) (Ext(u4j−1

i ) + bi + ηi,j , v
4j−1
i )

(Ext(u4j−2
i ) + ηi,j , v

4j−2
i ) (Ext(u4j

i ) + bi + ηi,j , v
4j
i )

 .

4. For all i ∈ [κ], P2 sends tcombi .
P1 → P2:

1. P1 chooses z1, . . . , zκ,∆ ← {0, 1}, computes w =
⊕κ

i=1 zi and sends s′0 = w + s0,
s′1 = w + ∆ + s1 and {w0

i = zi + H(s0
i ), w1

i = zi + ∆ + H(s1
i )}i∈[κ] where (s0

i , s
1
i ) are

computed by running the code of the token TKCom
S on input tcombi‖i.

2. P1 sends TCmsg3 = (e, decome).
3. For all i ∈ [κ], P1 creates a token TKi by sending (Create, sid, P1, P2,midl+1+i,M3) to
FgWRAP where M3 implements the following functionality:

On input (sid, bi,TCdecombi):
– For the case where sid 6= sid the token aborts;

If TCdecombi is verified correctly then output (sib, decomsi
b
), else output (⊥,⊥)

• Output Phase:

1. For all i ∈ [κ], P2 sends (Run, sid,midl+1, (tcombi , i)) and receives comsi0
, comsi0

.

2. For all i ∈ [κ], P2 sends (Run, sid,midl+1+i, (bi,TCdecombi)) and receives (sib, decomsi
b
). If

the decommitments decomsi
b
and decome are valid, P2 computes z̃i = H(sib) + wbii and sb =⊕κ

i=1 z̃i + s′b. If any of the tokens abort, the receiver sets sb = ⊥, where ⊥ is a default value.

Next, we prove the following theorem,

Theorem 5.4.1. Assume the existence of one-way permutations, then Protocol ΠOT securely
realizes FOT in the FgWRAP-hybrid.

Proof overview. On a high-level, when the sender is corrupted the simulator rewinds the ad-
versary in order to extract both P1’s inputs to the OT. Namely, in the first execution simulator
S plays the role of the honest receiver with input 0 and learns the challenge e. It then rewinds
the adversary and changes the receiver’s commitments bi’s in a way that allows equivocating
these commitments into both b = 0 and b = 1. Finally, S queries the tokens {TKi}i∈[κ] twice
by communicating with FgWRAP and decommiting into two different sets of bit-vectors, which
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allows S to extract both inputs s0 and s1. The security proof follows by exploiting the trapdoor
commitment property, which allows in the simulation to open the commitments of the receiver’s
input shares {bi}i∈[κ] into two distinct bit-vectors that correspond to distinct bits. The indis-
tinguishability argument asserts that the simulated and real views are statistically close, due
to the statistical hiding property of the commitment scheme that we use within the Pass-Wee
trapdoor commitment scheme.

On the other hand, when the receiver is corrupted the simulator extracts its input b based
on the first message and the queries to the tokens. We note that extraction must be carried out
carefully, as the receiver commits to each bit bi using κ matrices and may commit to different
bits within each set of matrices (specifically, there may be commitment for which the committed
bit is not even well defined). Upon extracting b, the proof continues by considering a sequence
of hybrids where we replace the hardcore bits for the positions {bi + 1}i∈[κ]. Specifically, these
are the positions in which the receiver cannot ask for decommitments and hence does not learn
{sibi+1}i∈[κ]. Our proof of indistinguishability relies on the list-decoding ability of the Goldreich-
Levin hardcore predicate (cf. Theorem 5.3.2), that allows extraction of the input from an
adversary that can guess the hardcore predicate on the input with probability significantly
better than a half.

Proof. We consider each corruption case separately. In case the adversary A issues a transfer
query (transfer, ·), S transfers the query to the FgWRAP.

Note that in this protocol there is no need to allow transfer queries to the FgWRAP function-
ality.

Simulating the corrupted P1. LetA be a PPT adversary that corrupts P1 then we construct
a simulator S as follows,

1. S invokes A on its input and a random string of the appropriate length.

2. Adversary A communicates with functionality FgWRAP on behalf of the corrupted party
by sending create messages {(Create, sid, P1, P2,midl,M1)}l∈[4κ2] and (Create, sid, P1, P2,
midl+1,M2). Then FgWRAP forwards these tokens to the honest party by sending receipt
messages {(Receipt, sid, P1, P2,midl,M1)}l∈[4κ2] and (Receipt, sid, P1, P2,midl+1,M2).

3. Upon receiving acknowledgement messages {(Receipt, sid, P1, P2,midl, ·)}l∈[4κ2+1] that all
[4κ2] + 1 tokens have been created by A, S emulates the role of the honest receiver using
an input bit b = 0. If come is decommitted correctly, S stores this value and rewinds the
adversary to the first message. Otherwise, S halts and outputs A’s view thus far, sending
(⊥,⊥) to the ideal functionality.

4. S picks two random bit-vectors (b1, . . . , bκ) and (b′1, . . . , b′κ) such that
⊕κ
i=1 bi = 0 and⊕κ

i=1 b
′
i = 1. Let e = e1, . . . , eκ denote the decommitment of come obained from the

previous step. Then, for all i, j ∈ [κ], S sends matrix M j
i where the eith column is defined

by (
(Ext(u4j−3

i ) + ηi,j , v4j−3
i )

(Ext(u4j−2
i ) + ηi,j , v4j−2

i )

)
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whereas the (1− ei)th column is set

w.p. 1
2 to

(
(Ext(u4j−1

i ) + ηi,j , v4j−1
i )

(Ext(u4j
i ) + 1 + ηi,j , v4j

i )

)
, and

w.p. 1
2 to

(
(Ext(u4j−1

i ) + 1 + ηi,j , v4j−1
i )

(Ext(u4j
i ) + ηi,j , v4j

i )

)
.

5. Upon receiving the sender’s message the simulator checks if come is decommitted correctly.
Otherwise, S rewinds the adversary to before the first message was sent and returns to
Step 4. In each rewinding S uses fresh randomness to generate the receiver’s message. It
repeatedly rewinds until the malicious sender successfully decommits e. If it tries to make
more than 2κ/2 attempts, it simply halts outputting fail.
Next, to extract s0, it decommits to b1, . . . , bn (and to extract s1, it decommits to
(b′1, . . . , b′n). Recall that to reveal a commitment to a value bi the simulator decommits that
row of the matrix that adds up to bi. Notice that by out construction, such a row always
exists and is either the first row or the second row with the probability 1/2. We remark
here that the simulator S creates the code of the actual Turing Machine incorporated in
the token as opposed to running the token itself. Furthermore, each of the two extractions
start with the Turing Machine in the same start (as opposed to running the machine in
sequence). This is because the code in the malicious token can be stateful and rewinding
it back to the start state prevents stateful behavior. More precisely, the simulator needs to
proceed exactly as the honest receiver would in either case. If for any b ∈ {0, 1} extraction
fails for sb, then following the honest receiver’s strategy the simulator sets sb to the default
value ⊥.

6. Finally, S sends (s0, s1) to the trusted party that computes FOT and halts, outputting
whatever A does.

We now prove that the sender’s view in both the simulated and real executions is computa-
tionally indistinguishable via a sequence of hybrid executions. More formally,

Lemma 5.4.1. The following two ensembles are computationally indistinguishable,{
IDEALFOT,S(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,b,z∈{0,1}∗

c≈
{

REALFgWRAP
ΠOT,A(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,b,z∈{0,1}∗

Proof. Roughly speaking, we prove that the joint output distribution of both the receiver and
the sender is computationally indistinguishable. Our proof follows by a sequence of hybrid
executions defined below. We denote by HybridiFOT,Si(z),I(κ, (s0, s1), b) the random variable
that corresponds to the simulator’s output in hybrid execution Hi when running against party
Si that plays the role of the receiver according to the specifications in this hybrid (where S0
refers to the honest real receiver). For simplicity of exposition, we abbreviate it to Hybridi.

Hybrid H0: In the first hybrid, we consider a simulator S0 that receives the real input b of the
receiver and simply follows the protocol as the honest receiver would. Finally, it outputs
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the view of the adversary and the receiver’s output as computed in the emulation. It
follows from construction that the distribution of the output of the first hybrid is identical
to the real execution.

Hybrid H1: In this hybrid, the simulator S1 receives the real input of the receiver and proceeds
as follows. It first interacts with the adversary with the actual receiver’s input and checks
if it successfully decommits e. If it does not, then the simulator simply outputs the view of
the adversary and ⊥ as the receiver’s output. Otherwise, it proceeds to a rewinding phase.
In this phase, it repeatedly rewinds the adversary to the first message and then samples
a new first message by committing to b using fresh randomness. Specifically, S1 invokes
token TKPRF,l

P1
each time on new random inputs uji (for all i ∈ [κ], j ∈ [4κ] where l encodes

(i, j)), and continues rewinding A until it obtains an interaction in which the adversary
successfully decommits to e again. If the simulation makes more than 2κ/2 rewinding
attempts, then it aborts.

We now argue that the view produced in this hybrid is statistically close to the view
produced within the previous hybrid. Observe that if the simulation does not cut off after
2κ/2 attempts, then the view is identically distributed to the view in H0. Therefore to
show that the views are statistically close, it suffices to prove that the simulation aborts
with negligible probability. Let p be the probability with which the adversary decommits e
correctly when the receiver honestly generates a commitment to b. We consider two cases:

• If p > κ
2κ/2 , then the probability that the simulation takes more than 2κ/2 steps can

be computed as
(
1− κ

2κ/2

)2κ/2

= e−κ and which is negligible in κ.

• If p < κ
2κ/2 , then the probability that the simulation aborts is bounded by the proba-

bility that it proceeds to the rewinding phase which is at most p and hence negligible
in κ.

It only remains to argue that the expected running time of the simulation is polynomial.
We remark that this follows from Lemma 5.4.2 proven in the next hybrid by setting p0
and pb to p.

Hybrid H2: In this hybrid, the simulator S2 proceeds identically to S1 with the exception that
in the first run where the simulator looks for the decommitment of e, it follows the honest
receiver’s strategy with input 0 instead of its real input. Now, since each commitment
is generated honestly, it follows from Lemma 5.5.1 using an union bound that the first
message generated by the receiver with input b and input 0 are 4κ22−κ−1-close. Moreover,
since the only difference in the two hybrids is within the first message sent by the receiver
in the first execution, the distributions Hybrid1 and Hybrid2 are statistically close.

It only remains to argue that the running time of the simulation is still polynomial.

Lemma 5.4.2. The expected running time of S2 is polynomial-time and the probability
that S2 aborts is negligible.
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Proof: Let p0 be the probability that adversary successfully decommits to e in the
main execution of hybrid H2 and pb be the probability that the adversary successfully
decommits when the receiver’s commitments are made to the real input b. Now, since the
first message of the receiver when the commitment is made to 0 or b is 2−O(κ)-close, we
have that |p0 − pb| < 2−O(κ).
Next, we prove that the expected number of times the simulator runs the execution is

(1− p0)× 1 + p0 ×min
{

2κ/2, 1
pb

}
.

We consider two cases and argue both regarding the running time and abort probability
in each case.

• p0 > 2κ2−κ/2: Since |pb − p0| < 2−O(κ), it follows that,

pb > p0 − 2−O(κ) = 2κ2−κ/2 − 2−O(κ) > κ2−κ/2 = p0
2

Therefore, p0/pb < 2. Now, since min
{

2κ/2, 1
pb

}
= 1

pb
, the expected number of

rewinding attempts is
(1− p0) + p0 ×

1
pb
< 3

which is polynomial.
Next, we argue regarding the abort probability. Specifically, the probability that the
number of attempts exceeds 2κ/2 is given by

(1− pb)2κ/2
<

(
1− κ

2κ/2

)2κ/2

= O(e−κ).

Therefore, the probability that the simulator aborts is negligible.

• p0 < 2κ2−κ/2: Since min
{

2κ/2, 1
pb

}
= 2κ/2, the expected number of rewinding at-

tempts is
(1− p0) + p0 × 2κ/2 < 1 + 2κ2

which is polynomial.
The abort probability in this case is bounded by p0 which is negligible.

2

Hybrids H3,0 . . . ,H3,κ: We define a collection of hybrid executions such that for every i ∈ [κ]
hybrid H3,i is defined as follows. Assume that (b1, . . . , bκ) correspond to the bit-vector for
the real input of the receiver b. Then in H3,i, the first i commitments are computed as
in the simulation (i.e. equivocated using the trapdoor e), whereas the remaining κ − i
commitments are set as commitments of bi+1, . . . , bκ as in the real execution. Note that
hybrid H3,0 is identical to hybrid H2 and that the difference between every two consecutive
hybrids H3,i−1 and H3,i is regarding the way the ith commitment is computed, which is
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either a commitment to bi computed honestly in the former hybrid, or equivocated using
the trapdoor in the latter hybrid. Indistinguishability of H3,i and H3,i−1 follows similarly
to the indistinguishability argument of H1 and H2, as the only difference is in how the
unopened commitments are generated. Therefore, we have the following lemma.

Claim 5. For every i ∈ [κ], Hybrid1,i−1
s≈ Hybrid1,i

Note that the proof regarding the expected running time of the simulator is identical to
the proof of Lemma 5.4.2.

Hybrid H4: In this hybrid, we consider the actual simulator. First, we observe that the
view of the adversary output by S3,κ in H3,κ is independent of the receiver’s real input
b. This is because in H3,κ, all commitments are computed in an equivocation mode,
where the real input b of the receiver is used only after the view of the adversary is
generated. More precisely, only after S3,κ obtains a second view on which the adversary
successfully decommits to e, does it use the tokens to extract sb by decommitting the
equivocal commitments to b1, . . . , bn such that

⊕
i bi = b. In fact, since in the rewinding

phase all the commitments are equivocated, the bi’s themselves can also be sampled after
the view of the adversary is generated.
Next, we observe that the actual simulator proceeds exactly as S3,κ with the exception
that it communicates with FgWRAP in order to run the tokens twice after the adversary’s
view is obtained and the rewinding phase is completed. Namely, it asks FgWRAP to run the
token once with a vector of bi’s that add up to 0 in order to obtain s0, then rewinds the
tokens back to the original state and runs them another time with a vector of b′i’s that add
up to 1 in order to extract s1. (s0, s1) are then fed to the ideal functionality. Recall that
S3,κ on the other hand, runs the tokens only once for the actual receiver’s input b. Now,
since the view of the adversary in H3,κ and IDEAL are identically distributed, it follows
that the value extracted for sb in H3,κ is identically distributed to sb in the ideal execution
for both b = 0 and b = 1. Therefore, we can conclude that the output of the simulator
in H3,κ and the joint output of the simulator and honest receiver the ideal execution, are
identically distributed.

Claim 6. Hybrid3,κ ≈c Hybrid4

Simulating the corrupted P2. LetA be a PPT adversary that corrupts P2 then we construct
a simulator S as follows,

1. S invokes A on its input and a random string of the appropriate length.

2. S communicates with FgWRAP on behalf of the honest party by sending create messages
{(Create, sid, P1, P2,midl,M1)}l∈[4κ2] and (Create, sid, P1, P2,midl+1,M2), where the code
M1 implements truly random functions (that is,M1 is encoded with a lookup table that in-
cludes some polynomial number of queries bounded by the running time of the adversary).
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Then FgWRAP forwards these tokens by sending receipt messages {(Receipt, sid, P1, P2,
midl,M1)}l∈[4κ2] and (Receipt, sid, P1, P2,midl+1,M2) to A. For each query u ∈ {0, 1}5κ

made by A to token TKPRF,l
P1

, functionality FgWRAP runs M1 on that query and returns a
random v from {0, 1}κ. Similarly, M2 implements a random function that maps elements
from {0, 1}κ → {0, 1}p(κ).

3. Next, S retrieves A queries for session sid from FgWRAP by sending a (retreive, sid) message
receiving the list Qsid. S splits the set of receiver’s queries (tcomb, i

∗) to the token TKCom
P1

(that were further part of the adversary’s message), and adds them either to the “valid”
set ICom or “invalid” set JCom. More formally, let T = q(κ) denote the number of times
the token TKCom

P1 is queried by P2 for some polynomial q. For each query (tcomb, i
∗), we

say that the query is valid if and only if there exist values {(βti , uti, vti)}i∈[κ],t∈[4κ] such that
tcombi = (M i

1, . . . ,M
i
κ), ∀i, j ∈ [κ],

M i
j =

 β4j−3
i , v4j−3

i β4j−1
i , v4j−1

i

β4j−2
i , v4j−2

i β4j
i , v

4j
i


and, for every i ∈ [κ], t ∈ [4κ], the query/answer pair (uti, vti) has already been recorded as
a query to the corresponding PRF token. Next, for every valid query, the simulator tries
to extract the committed value. This it done by first computing

γj00 = β4j−3
i + Ext(u4j−3

i ) γj01 = β4j−1
i + Ext(u4j−1

i )
γj10 = β4j−2

i + Ext(u4j−2
i ) γj11 = β4j

i + Ext(u4j
i ).

Next it marks the indices j for which γj00 = γj10 and γj01 = γj11. Moreover, for the marked
indices it computes γj = γj00 + γj01. If there are at least more than half the indices that
are marked and are commitments to the same value, say γ then (tcomb, i

∗, γ) is added to
ICom. Otherwise (tcomb, i

∗,⊥) is added to JCom.
Next, S computes b =

⊕κ
i=1 bi and sends b to the trusted party that computes FOT.

Upon receiving sb, S picks a random sb+1 from the appropriate domain and completes the
execution by playing the role of the honest sender on these two inputs.

We now prove that the receiver’s view in both the simulated and real executions is compu-
tationally indistinguishable via a sequence of hybrid executions. More formally,

Lemma 5.4.3. The following two ensembles are computationally indistinguishable,{
IDEALFOT,S(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,b,z∈{0,1}∗

c≈
{

REALFgWRAP
Π,A(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,,bz∈{0,1}∗

Proof. Roughly speaking, we prove that the join output distribution of both the receiver and the
sender is computationally indistinguishable. Now, since only the receiver (which is the corrupted
party) has an input, the proof boils down to proving that the receiver’s view is indistinguishable
in both executions. Our proof follows by a sequence of hybrid executions defined below. We de-
note by HybridiFOT,Si(z),I(κ, (s0, s1), b) the random variable that corresponds to the adversary’s
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view in hybrid execution Hi when running against party Si that plays the role of the sender
according to the specifications in this hybrid (where S0 refers to the honest real sender).

Hybrid H0: The first hybrid execution is the real execution. For simplicity of exposition, we
abbreviate it to Hybridi.

Hybrids H1,0 . . . ,H1,4κ2 : We define a collection of hybrid executions such that for every l ∈
[4κ2] hybrid H1,l is defined as follows. We modify the code of token TKPRF,l

P1
by replacing

the function PRFγl with a truly random function fl. In particular, given a query u the
token responds with a randomly chosen κ bit string v, rather than running the original
code of M1. We maintain a list of A’s queries and responses so that repeated queries
will be consistently answered. In addition, the code of token TKi is modified so that
it verifies the decommitment against the random functions fl as opposed to the PRF
functions previously embedded in TKPRF,l

P1
. It is simple to verify that the adversary’s view

in every two consecutive hybrid executions is computationally indistinguishable due to the
security of the pseudorandom function PRFγl . Moreover, since the PRF key is hidden from
the receiver, it follows from the pseudorandomness property that the views in every two
consecutive hybrid executions are computationally indistinguishable. More formally, we
have the following lemma.

Claim 7. For every l ∈ [4κ2], Hybrid1,l−1 ≈c Hybrid1,l

Hybrid H2: Similarly, we consider a hybrid execution for which the code of token TKCom
P1 is

modified so that it makes use of a truly random function f ′ rather than a pseudorandom
function PRFγ′ . Just as in the previous hybrid, we have the following Lemma.

Claim 8. Hybrid1 ≈c Hybrid2

Hybrids H3,0 . . . ,H3,4κ2 : This sequence of hybrids executions is identical to hybrid H2 except
that here we ensure that no two queries made by A to the token TKPRF,l

P1
have the same

response. Specifically, in case of a collision simulator S3,l aborts.

Claim 9. For every l ∈ [4κ2], Hybrid3,l−1 ≈s Hybrid3,l

Proof: As we replaced PRF functions to truly random functions, we have that the
probability the simulation aborts in H3,l is at most the probability of finding a collision
for a random function. To prove statistical indistinguishability it suffices to show that this
probability is negligible. More formally, if the adversary makes a total of Q queries to both
tokens, then the probability that any pair of queries yields a collision can be bounded by(Q

2
)
2−` where ` is the minimum length of the outputs of all random functions. In our case

this is κ and hence the probability that the simulator aborts in every hybrid is negligible.
2

Hybrid H4: In this hybrid execution, simulator S4 plays the role of the sender as in hybrid H3
except that it extracts the adversary’s input bit b as carried out in the simulation by S.
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First, we observe that for any i ∈ [κ] and t ∈ [4κ], the probability that the receiver reveals
a valid pre-image uti for vti for which there does not exists a query/answer pair (uti, vti)
collected by the simulator is exponentially small since we rely on truly random functions
in this hybrid. Therefore, except with negligible probability, the receiver will be able to
decommit only to γj00, γ

j
01, γ

j
10, γ

j
11 as extracted by the simulator. Consequently, using the

soundness of the Pass-Wee trapdoor commitment scheme, it follows that the receiver can
only decommit to bi and b as extracted by the simulator. Therefore, we can conclude
that the probability that a malicious receiver can equivocate the commitment tcombi is
negligible. The above does not make any difference to the receiver’s view which implies
that,

Claim 10. Hybrid3 ≈c Hybrid4

Moreover, recall that extraction is straight-line, thus the simulator still runs in strict
polynomial-time.

Hybrids H5,0, H̃5,0, . . . ,H5,κ, H̃5,κ: Let tcombi be the ith commitment sent to P1 in the first
message. Then H5,i proceeds identically to H̃5,i−1, whereas H̃5,i proceeds identically to
H5,i, with the following exceptions:

• If there exists a tuple (tcombi , i, γ) in ICom, then in experiment H5,i, H(siγ+1) is re-
placed by a random bit in the second message fed to the adversary.
• If there exists a tuple (tcombi , i,⊥) in JCom, then in experiment H5,i, H(si0) is replaced
by a random bit in the second message fed to the adversary.
• If there exists a tuple (tcombi , i,⊥) in JCom, then in experiment H̃5,i, H(si1) is replaced
by a random bit in the second message fed to the adversary.

Note that hybrid H5,0 is identical to hybrid H4 and that the difference between every pair
of consecutive hybrids H5,i−1 and H5,i is with respect to H(sibi+1) in case i ∈ [|ICom|] or
(H(si0),H(si1)) in case i ∈ [|JCom|], that are replaced with a random bit in H5,i. We now
prove the following.

Claim 11. For every i ∈ [κ], H̃ybrid5,i−1 ≈c Hybrid5,i and Hybrid5,i ≈c H̃ybrid5,i

Proof: Intuitively, the indistinguishability of any pair of hybrids follows from the com-
putational hiding property of the commitment scheme Com and the binding property of
tcombi . Assume for contradiction, that there exists i ∈ [κ] for which H̃ybrid5,i−1 and
Hybrid5,i are distinguishable by a PPT distinguisher D with probability ε.
If there exists a tuple (tcombi , i, γ) ∈ ICom then define b∗ = 1 + γ, otherwise define b∗ = 0.
Then, it follows that the only difference between hybrids H̃5,i−1 and H5,i is that H(sib∗)
is computed correctly in H̃5,i−1 while replaced with a random bit in H5,i. Next, we show
how to build an adversary ACom that on input a commitment Com(s) identifies H(s) with
probability non-negligibly better than 1

2 + ε
2 . Then using the Goldreich-Levin Theorem
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(Theorem 5.3.2), it follows that we can extract value sib∗ and this violates the hiding
property of the commitment scheme Com.
More formally, consider ACom that receives as input a commitment to a randomly chosen
string s, namely Com(s). ACom internally incorporates the adversary ACom and emulates
the experiment H̃5,i with the exception that in place of Com(sib∗), ACom instead feeds
Com(s) and replaces H(sib∗) with a uniformly chosen bit, say b̃. Finally, it feeds the output
of the hybrid experiment conducted internally, namely, the view of the adversary to D,
and computes an output based on D’s output g as follows:

• If g = 1, then ACom outputs the value for b̃ as the prediction for H(s), and outputs
1− b̃ otherwise.

Denote by H5,i the experiment that proceeds identically to H̃5,i with the exception that,
in place of H(sib∗) we feed 1 + H(sib∗), namely the complement of the value of the hardcore
predicate. Let Hybrid5,i denote the distribution of the view of the adversary in this hybrid.
It now follows that

ε <
∣∣∣Pr[(v, sb)← H̃ybrid5,i : D(v) = 1]− Pr[(v, sb)← Hybrid5,i : D(v) = 1]

∣∣∣
=
∣∣∣Pr[(v, sb)← H̃ybrid5,i : D(v) = 1]

− 1
2
(

Pr[(v, sb)← H̃ybrid5,i : D(v) = 1] + Pr[(v, sb)← Hybrid5,i : D(v) = 1]
)∣∣∣

= 1
2

∣∣∣Pr[(v, sb)← H̃ybrid5,i : D(v) = 1]− Pr[(v, sb)← Hybrid5,i : D(v) = 1]
∣∣∣.

Without loss of generality we can assume that,3

1
2
(

Pr[(v, sb)← H̃ybrid5,i : D(v) = 1]− Pr[(v, sb)← Hybrid5,i : D(v) = 1]
)
> ε

Therefore,

1
2
(

Pr[(v, sb)← H̃ybrid5,i : D(v) = 1]− (1− Pr[(v, sb)← Hybrid5,i : D(v) = 0)]
)
> ε

i.e.,
1
2 Pr[(v, sb)← H̃ybrid5,i : D(v) = 1] + 1

2 Pr[(v, sb)← Hybrid5,i : D(v) = 0)] > 1
2 + ε

i.e.,Pr[β ← {0, 1} : (v, s)← Hb : D(v) = b] > 1
2 + ε

where H0 = Hybrid5,i and H1 = H̃ybrid5,i. We now observe that sampling from Hb where
b is uniformly chosen is equivalent to sampling from H5,i. Therefore, since ACom internally
emulates H5,i by selecting b̃ at random and the distinguisher identifies precisely if this bit
b̃ came from H0 or H1 correctly, we can conclude that b̃ is the value of the hardcore bit
when it comes from H0 and the complement of b̃ when it comes from H1. Therefore,
ACom guesses H(s) correctly with probability 1

2 + ε. Using the list-decoding algorithm of
3Otherwise, we can replace D with another distinguisher that flips D’s output.
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Goldreich-Leving hardcore-predicate (cf. Theorem 5.3.2), it follows the such an adversary
can be used to extract s thereby contradicting the computational hiding property of the
Com scheme.
We remark that proving indistinguishability of H̃ybrid5,i,Hybrid5,i follows analogously and
this concludes the proof of the Lemma. 2

Hybrids H6: In this hybrid execution simulator S5 does not know the sender’s inputs (s0, s1),
but rather communicates with a trusted party that computes FOT. S6 behaves exactly as
S5,κ except that when extracting the bit b it sends it to the trusted party, which returns
sb. Moreover, S6 uses a random value for sb+1. We argue that hybrids S5,κ and S6 are
identically distributed as the set {wib+1}i∈[κ] is independent of {sibi+1}i∈[κ].

Claim 12. Hybrid5,κ ≈s Hybrid5

Proof: Following from the fact that H(sibi+1) is replaced with a random bit for all i ∈ [κ], it
must hold that the values w1+bi

i are random as well as these values are masked using random
independent bits instead of the set {H(sibi+1)}i∈[κ]. As a result, these values contribute to
a random value sb+1. In addition, we claim that the adversary can only learn sb where b is
the bit extracted by S6. This is because A can only invoke token TKi on the commitment
combi , for which is can only open in a single specific way. 2

Finally, note that hybrid H6 is identical to the simulation described above, which concludes
the proof.

5.4.2.1 Relaxing to One-Way Functions

In our construction we rely on one-way permutations for a non-interactive perfectly binding
commitment scheme. Recall that, the TKCom on input (·, 0) is required to output a commitment
to the challenge e and else commitments to the si0, si1’s values. To relax this assumption to
one-way functions, we instead need to rely on the two-message Naor’s statistically binding com-
mitment scheme [Nao91] where the receiver sends the first message. Instead of communicating
this message to the sender, the receiver directly feeds it to the token as input. More precisely,
let Ĉom(m; r,R) denote the honest committer’s strategy function that responds according
to Naor’s commitment with input message m and random tape r, where the receiver’s first
message is R. We make the following modification and incorporate the following functionality:
On input (tcombi , i, R0, R1) proceed as follows:

• If i = 0: compute V = PRF′γ′(0κ‖R0‖R1), parse V as e‖r and output come ← Ĉom(e; r,R0).

• Otherwise: compute V = PRF′γ′(tcombi‖i‖R0‖R1), parse V as si0‖si1‖r0‖r1, compute
comsi

b
← Ĉom(sib; rb, Rb) for b = {0, 1}, and output comsi0

, comsi1
.
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Finally, along with the first message sent by the receiver to the sender, it produces R0, R1, the
first messages corresponding to the commitments made so that the sender can reconstruct the
values being committed to (using the same PRF function). We note that two issues arise when
proving security using the modified token’s functionality.

1. The first messages for the Naor commitment used when querying the token might not be
the same as the one produced in the first message by the receiver. In this case, by the
pseudorandomness property of the PRF it follows that the values for these commitments
computed by the sender will be independent of the commitments received from the token
by the receiver. Hence, the statistically-hiding property of the values used by the sender
will not be violated.

2. The binding property of the commitment scheme is only statistical (as opposed to perfect).
This will affect the failure probability of the simulator when extracting the sender’s input
only by a negligible amount and can be bounded overall by incorporating a union bound
argument.

We refer to the full version for the reusability of tokens.

5.5 Two-Round Token-Based GUC Oblivious Transfer

In this section we present our main protocol that implements GUC OT in two rounds. We
first construct a three-round protocol and then show, how to obtain a two-round protocol by
exchanging tokens just once in a setup phase. Recall that the counter example to the [GIS+10]
protocol shows that directly extracting the sender’s inputs does not necessarily allow us to extract
the sender’s inputs correctly, as the tokens can behave maliciously. Inspired by the recently
developed protocol from [ORS15] we consider a new approach here for which the sender’s inputs
are extracted directly by monitoring the queries it makes to the PRF tokens and using additional
checks to ensure that the sender’s inputs can be verified.

Protocol intuition. As a warmup consider the following sender’s algorithm that first chooses
two random strings x0 and x1 and computes their shares [xb] = (x1

b , . . . , x
2κ
b ) for b ∈ {0, 1} using

the κ+ 1-out-of-2κ Shamir secret-sharing scheme. Next, for each b ∈ {0, 1}, the sender commits
to [xb] by first generating two vectors αb and βb such that αb + βb = [xb], and then committing
to these vectors. Finally, the parties engage in 2κ parallel OT executions where the sender’s
input to the jth instance are the decommitments to (α0[j], β0[j]) and (α1[j], β1[j]). The sender
further sends (s0 + x0, s1 + x1). Thus, to learn sb, the receiver needs to learn xb. For this, it
enters the bit b for κ+1 or more OT executions and then reconstructs the shares for xb, followed
by reconstructing sb using these shares. Nevertheless, this reconstruction procedure works only
if there is a mechanism that verifies whether the shares are consistent.

To resolve this issue, Ostrovsky et al. made the observation that the Shamir secret-sharing
scheme has the property for which there exists a linear function φ such that any vector of shares
[xb] is valid if and only if φ(xb) = 0. Moreover, since the function φ is linear, it suffices to check
whether φ(αb)+φ(βb) = 0. Nevertheless, this check requires from the receiver to know the entire
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vectors αb and βb for its input b. This means it would have to use b as the input to all the 2κ
OT executions, which may lead to an input-dependent abort attack. Instead, Ostrovsky et al.
introduced a mechanism for checking consistency indirectly via a cut-and-choose mechanism.
More formally, the sender chooses κ pairs of vectors that add up to [xb]. It is instructive to
view them as matrices A0, B0, A1, B1 ∈ Zκ×2κ

p where for every row i ∈ [κ] and b ∈ {0, 1}, it
holds that Ab[i, ·] + Bb[i, ·] = [xb]. Next, the sender commits to each entry of each matrix
separately and sets as input to the jth OT the decommitment information of the entire column
((A0[·, j], B0[·, j]), (A1[·, j], B1[·, j])). Upon receiving the information for a particular column j,
the receiver checks if for all i, Ab[i, j] +Bb[i, j] agree on the same value. We refer to this as the
shares consistency check.

Next, to check the validity of the shares, the sender additionally sends vectors [zb1], . . . , [zbκ]
in the clear along with the sender’s message where it commits to the entries of A0, A1, B0 and B1
such that [zbi ] is set to φ(A0[i, ·]). Depending on the challenge message, the sender decommits
to A0[i, ·] and A1[i, ·] if ci = 0 and B0[i, ·] and B1[i, ·] if ci = 1. If ci = 0, then the receiver
checks whether φ(Ab[i, ·]) = [zbi ], and if ci = 1 it checks whether φ(Bb[i, ·]) + zbi = 0. This check
ensures that except for at most s ∈ ω(log κ) of the rows (Ab[i, ·], Bb[i, ·]) satisfy the condition
that φ(Ab[i, ·]) + φ(Bb[i, ·]) = 0 and for each such row i, Ab[i, ·] + Bb[i, ·] represents a valid set
of shares for both b = 0 and b = 1. This check is denoted by the shares validity check. In
the final protocol, the sender sets as input in the jth parallel OT, the decommitment to the
entire jth columns of A0 and B0 corresponding to the receiver’s input 0 and A1 and B1 for
input 1. Upon receiving the decommitment information on input bj , the receiver considers a
column “good” only if Abj [i, j] + Bbj [i, j] add up to the same value for every i. Using another
cut-and-choose mechanism, the receiver ensures that there are sufficiently many good columns
which consequently prevents any input-independent behavior. We refer this to the shares-validity
check.

Our oblivious transfer protocol. We obtain a two-round oblivious transfer protocol as
follows. The receiver commits to its input bits b1, . . . , b2κ and the challenge bits for the share
consistency check c1, . . . , cκ using the PRF tokens. Then, the sender sends all the commitments
a la [ORS15] and 2κ + κ tokens, where the first 2κ tokens provide the decommitments to the
columns, and the second set of κ tokens give the decommitments of the rows for the shares
consistency check. The simulator now extracts the sender’s inputs by retrieving its queries and
we are able to show that there cannot be any input dependent behavior of the token if it passes
both the shares consistency check and the shares validity check. See Figure 5.4 for the protocol
overview. In Section 5.5.1 we discuss how to obtain a two-round two-party computation using
our OT protocol.

We now describe our protocol ΠUC
OT with sender P1 and receiver P2 using the following building

blocks: let (1) Com be a non-interactive perfectly binding commitment scheme, (2) let S =
(Share,Recon) be a (κ + 1)-out-of-2κ Shamir secret-sharing scheme over Zp, together with a
linear map φ : Z2κ

p → Zκ−1
p such that φ(v) = 0 iff v is a valid sharing of some secret, (3) F, F ′ be

two families of pseudorandom functions that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ),
respectively (4) H denote a hardcore bit function and (5) Ext : {0, 1}5κ×{0, 1}d → {0, 1} denote
a randomness extractor where the source has length 5κ and the seed has length d. See Protocol 2
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P1(s0, s1) P2(b)

PRF tokens {TKPRF,l
P1
}l∈[3κ]

-

Select T1−b ⊂ [2κ] of size κ/2
Define Tb = [2κ]/T1−b
For every j ∈ [2κ], bj = β if j ∈ Tβ
Select c1, . . . , cκ ← {0, 1}

�

{combj}j∈[2κ], {comci}i∈[κ]

PRF tokens {TKPRF,l′
P2

}l′∈[8κ2]

pick x0, x1 ← Zp
(x1
b , . . . , x

2κ
b )← Share(xb)

(comA0 , comB0 , comA1 , comB1)
Z0, Z1, C0 = s0 + x0, C1 = s1 + x1

Tokens {TKj}j∈[2κ], {T̂Ki}i∈[κ] -

If checks pass extract xb, sb

Figure 5.4: [HPV16] A high-level diagram of ΠOT
UC.

for the complete description.

Protocol 2. Protocol ΠOT
UC - GUC OT with stateless tokens.

• Inputs: P1 holds two strings s0, s1 ∈ {0, 1}κ and P2 holds a bit b. The common input is sid.

• The protocol:

1. P1 → P2: P1 chooses 3κ random PRF keys {γl}[l∈3κ] for family F . Let PRFγl :
{0, 1}5κ → {0, 1}κ denote the pseudorandom function. P1 creates token TKPRF,l

P1
sending

(Create, sid, P1, P2,midl,M1) to FgWRAP where M1 is the functionality of the token that on
input (sid, x) outputs PRFγl(x) for all l ∈ [3κ]; For the case where sid 6= sid the token aborts;

2. P2 → P1: P2 selects a random subset T1−b ⊂ [2κ] of size κ/2 and defines Tb = [2κ]/T1−b. For
every j ∈ [2κ], P2 sets bj = β if j ∈ Tβ . P2 samples uniformly at random c1, . . . , cκ ← {0, 1}.
Finally, P2 sends
a) ({combj}j∈[2κ], {comci}i∈[κ]) to P1 where

∀ j ∈ [2κ], i ∈ [κ] combj = (Ext(uj) + bj , vj) and comci = (Ext(u′i) + ci, v
′
i)

uj , u
′
i ← {0, 1}5κ and vj , v′i are obtained by sending respectively (Run, sid,midj , uj) and

(Run, sid,mid2κ+i, u
′
i).

b) P2 generates the tokens {TKPRF,l′
P2

}l′∈[8κ2] which are analogous to the PRF tokens
{TKPRF,l

P1
}l∈[3κ] by sending (Create, sid, P2, P1,midl′ ,M2) to FgWRAP for all l′ ∈ [8κ2].

3. P1 → P2: P1 picks two random strings x0, x1 ← Zp and secret shares them using S . In
particular, P1 computes [xb] = (x1

b , . . . , x
2κ
b ) ← Share(xb) for b ∈ {0, 1}. P1 commits to the
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shares [x0], [x1] as follows. It picks random matrices A0, B0 ← Zκ×2κ
p and A1, B1 ← Zκ×2κ

p

such that ∀i ∈ [κ]:

A0[i, ·] +B0[i, ·] = [x0], A1[i, ·] +B1[i, ·] = [x1].

P1 computes two matrices Z0, Z1 ∈ Zκ×κ−1
p and sends them in the clear such that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).

P1 sends:
a) Matrices (comA0 , comB0 , comA1 , comB1) to P2, where,

∀ i ∈ [κ], j ∈ [2κ], β ∈ {0, 1} comAβ [i,j] = (Ext(uAβ [i,j] +Aβ [i, j], vAβ [i,j])
comBβ [i,j] = (Ext(uBβ [i,j] +Bβ [i, j], vBβ [i,j])

where (uAβ [i,j], uBβ [i,j]) ← {0, 1}5κ and (vAβ [i,j], vBβ [i,j]) are obtained by sending
(Run, sid,mid[i,j,β], u

Aβ [i,j]) and (Run, sid,mid2κ2+[i,j,β], u
Bβ [i,j]), respectively, to the to-

ken TKPRF,[i,j,β]
P2

where [i, j, β] is an encoding of the indices i, j, β into an integer in [2κ2].
b) C0 = s0 + x0 and C1 = s1 + x1 to P2.
c) For all j ∈ [2κ], P1 creates a token TKj sending (Create, sid, P1, P2,mid3κ+j ,M3)

to FgWRAP where M3 is the functionality that on input (sid, bj , decombj ), aborts
if sid 6= sid or if decombj is not verified correctly. Otherwise it outputs
(Abj [·, j], decomAbj [·,j], Bbj [·, j], decomBbj [·,j]).

d) For all i ∈ [κ], P1 creates a token T̂Ki sending (Create, sid, P1, P2,mid5κ+i,M4) to FgWRAP

where M4 is the functionality that on input (sid, ci, decomci) aborts if sid 6= sid or if
decomci is not verified correctly. Otherwise it outputs,

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0
(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

4. Output Phase:
For all j ∈ [2κ], P2 sends (Run, sid,mid3κ+j , (bj , decombj )) and receives

(Abj [·, j], decomAbj [·,j], Bbj [·, j], decomBbj [·,j]).

For all i ∈ [κ], P2 sends (Run, sid,mid5κ+i, (ci, decomci)) and receives

(A0[·, i], A1[·, i]) or (B0[·, i], B1[·, i]).

a) Shares Validity Check Phase: For all i ∈ [κ], if ci = 0 check that Z0[i, ·] = φ(A0[i, ·])
and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1 check that φ(B0[i, ·]) + Z0[i, ·] = 0 and
φ(B1[i, ·]) + Z1[i, ·] = 0. If the tokens do not abort and all the checks pass, the receiver
proceeds to the next phase.

b) Shares Consistency Check Phase: For each b ∈ {0, 1}, P2 randomly chooses a set
Tb for which bj = b of κ/2 coordinates. For each j ∈ Tb, P2 checks that there exists a
unique xjb such that Ab[i, j]+Bb[i, j] = xjb for all i ∈ [κ]. If so, xjb is marked as consistent.
If the tokens do not abort and all the shares obtained in this phase are consistent, P2
proceeds to the reconstruction phase. Else it abort.
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c) Output Reconstruction: For j ∈ [2κ]/T1−b, if there exists a unique xjb such that
Ab[i, j] +Bb[i, j] = xjb, mark share j as a good column. If R obtains less than κ+ 1 good
shares, it aborts. Otherwise, let xj1

b , . . . , x
jκ+1
b be any set of κ+ 1 consistent shares. P2

computes xb ← Recon(xj1
b , . . . , x

jκ+1
b ) and outputs sb = Cb + xb.

Next, we prove the following theorem,

Theorem 5.5.1. Assume the existence of one-way functions, then protocol ΠOT
UC GUC realizes

FOT in the FgWRAP-hybrid.

Proof overview. On a high-level, when the sender is corrupted our simulation proceeds anal-
ogously to the simulation from [ORS15] where the simulator generates the view of the mali-
cious sender by honestly generating the receiver’s messages and then extracting all the values
committed to by the sender. Nevertheless, while in [ORS15] the authors rely on extractable
commitments and extract the sender’s inputs via rewinding, we directly extract its inputs by
retrieving the queries made by the malicious sender to the {TKPRF,i

P2
}i tokens. The proof of cor-

rectness follows analogously. More explicitly, the share consistency check ensures that for any
particular column that the receiver obtains, if the sum of the values agree on the same bit, then
the receiver extracts the correct share of [xb] with high probability. Note that it suffices for the
receiver to obtain κ+ 1 good columns for its input b to extract enough shares to reconstruct xb
since the shares can be checked for validity. Namely, the receiver chooses κ/2 indices Tb and sets
its input for these OT executions as b. For the rest of the OT executions, the receiver sets its
input as 1− b. Denote this set of indices by T1−b. Then, upon receiving the sender’s response to
its challenge and the OT responses, the receiver first performs the shares consistency check. If
this check passes, it performs the shares validity check for all columns, both with indices in T1−b
and for the indices in a random subset of size κ/2 within Tb. If one of these checks do not pass,
the receiver aborts. If both checks pass, it holds with high probability that the decommitment
information for b = 0 and b = 1 are correct in all but s ∈ ω(logn) indices. Therefore, the
receiver will extract [xb] successfully both when its input b = 0 and b = 1. Furthermore, it is
ensured that if the two checks performed by the receiver pass, then a simulator can extract both
x0 and x1 correctly by simply extracting the sender’s input to the OT protocol and following
the receiver’s strategy to extract.

On the other hand, when the receiver is corrupted, our simulation proceeds analogous to
the simulation in [ORS15] where the simulator generates the view of the malicious receiver by
first extracting the receiver’s input b and then obtaining sb from the ideal functionality. It
then completes the execution following the honest sender’s code with (s0, s1), where s1−b is
set to random. Moreover, while in [ORS15] the authors rely on a special type of interactive
commitment that allows the extraction of the receiver’s input via rewinding, we instead extract
this input directly by retrieving the queries made by the malicious receiver to the {TKPRF,l

P1
}l∈[3κ]

tokens. The proof of correctness follows analogously. Informally, the idea is to show that the
receiver can learn κ + 1 or more shares for either x0 or x1 but not both. In other words there
exists a bit b for which a corrupted receiver can learn at most κ shares relative to s1−b. Thus, by
replacing s1−b with a random string, it follows from the secret-sharing property that obtaining
at most κ shares keeps s1−b information theoretically hidden.
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The next claim establishes that the commitments made by the parties are statistically hiding.
We remark that this claim is analogous to Claim 20 from [GIS+10]. For completeness, we present
it below.

Lemma 5.5.1. For any i ∈ [κ], let Db denote the distribution obtained by sampling a random
combi with bi = b. Then D0 and D1 are 2−κ+1-close.

Proof: Informally, the proof follows from the fact that ui has high min-entropy conditioned
on vi and therefore (Ext(ui, h), h) hides ui information theoretically as it is statistically close to
the uniform distribution. More formally, consider a possibly maliciously generated token M1
that incorporates an arbitrary functionality from 5κ bits to κ. It is possible to think of M1 as a
function even if the token is stateful since we only consider the min-entropy of the input with
respect to the output when M1 is invoked from the same state.

Let Sv denote the subset of {0, 1}5κ that contains all x ∈ {0, 1}5k such thatM1(x) = v. First,
we claim that for a randomly chosen x← {0, 1}5κ, SM1(x) is of size at least 23κ with probability
at least 1− 2−κ. Towards proving this we calculate the number of x’s for which |SM1(x)| < 23κ

and denote such an x by bad. Now, since there are at most 2k possible values that M1 may
output, then the number of bad x’s is:∑

v:|Sv |<23κ

|Sv| < 2κ × 23κ = 24κ.

Therefore, the probability that a uniformly chosen x is bad is at most 24k/25k = 2−k. Let U
and V denote random variables such that V is the response of M1 on U . It now holds that

Pr[u← {0, 1}5κ : H∞(U |V = M1(u)) ≥ 3κ] > 1− 2−κ.

In other words, the min-entropy of U is at least 3κ with very high probability. Now, whenever
this is the case, using the Leftover Hash Lemma (cf. Definition 5.3.1) with ε = 2−κ, m = 1
and k = 3κ implies that (Ext(U, h), h) is 2−κ-close to the uniform distribution. Combining the
facts that comb = (Ext(U, h)+b, h, V ) and that U has high min-entropy at least with probability
1− 2−κ, we obtain that D0 and D1 are 2−κ + 2−κ-close. 2

We continue with the complete proof.

Proof. Let A be a malicious PPT real adversary attacking protocol ΠUC
OT in the FgWRAP-hybrid

model. We construct an ideal adversary S with access to FOT which simulates a real execution
of ΠUC

OT with A such that no environment Z can distinguish the ideal process with S and FOT

from a real execution of ΠUC
OT with A. S starts by invoking a copy of A and running a simulated

interaction of A with environment Z, emulating the honest party. We describe the actions of S
for every corruption case.

Simulating the communication with Z: Every message that S receives from Z it internally
feeds to A and every output written by A is relayed back to Z.

In case the adversary A issues a transfer query (transfer, ·), S relays the query to the FgWRAP.
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Simulating the corrupted P1. We begin by describing our simulation:

1. A communicates with the functionality FgWRAP on behalf of the corrupted
parties by sending create messages {(Create, sid, P1, P2,midl,M1)}l∈[3κ]. Then
FgWRAP forwards these tokens to the honest parties by sending receipt messages
{(Receipt, sid, P1, P2,midl,M1)}l∈[3κ].

2. Upon receiving acknowledgement messages {(Receipt, sid, P1, P2,midl,M1)}l∈[3κ] that all
[3κ] tokens have been created by A, S communicates with the functionality FgWRAP on be-
half of the honest parties by sending create messages {(Create, sid, P2, P1,midl′ ,M2)}l′∈[8κ2],
where the code M2 implements truly random functions (that is, M2 is encoded with
a lookup table that includes some polynomial number of queries bounded by the run-
ning time of the adversary). Then, the functionality FgWRAP forwards receipt messages
{(Receipt, sid, P2, P1,midl′ ,M2)}l′∈[8κ2] to A. For each query u ∈ {0, 1}5κ made by A to
the tokens TKPRF,l′

P2
, functionality FgWRAP runs M2 on that query and returns a random v

from {0, 1}κ.

3. S generates the first message by following the code of the honest receiver with input b = 0.

4. Upon receiving the second message from A, i.e. commitments
(comA0 , comB0 , comA1 , comB1) and (C0, C1), it completes the execution by following
the honest receiver’s code.

5. Next, S tries to extract s0 and s1. For this, it first extracts matrices A0, B0, A1, B1 from
the respective commitments as described in the simulation for the proof of ΠOT. More
precisely, given any commitment β, v, it first checks if there exists a query/answer pair
(u, v) that has already been recorded by FgWRAP with respect to that token by sending a
retrieve message (retreive, sid) to FgWRAP which returns the list Qsid of illegitimate queries.
If there exists such a query then the simulator sets the decommitted value to be β+Ext(u),
and ⊥ otherwise. Next, to extract sb, S proceeds as follows: For every i ∈ [κ], it computes
Ab[i, j] + Bb[i, j] for all j ∈ [2κ] and marks that column j good if they all agree to the
same value, say, γj . If it finds more than κ+ 1 good columns, it reconstructs the secret xb
by using share reconstruction algorithm on {γj}j∈good. Otherwise, it sets xb to ⊥.

6. S computes s0 = C0 + x0 and s1 = C1 + x1 and sends (s0, s1) to the trusted party that
computes FOT and halts, outputting whatever A does.

Next, we prove the correctness of our simulation.

Hybrid H0: In this hybrid game there is no trusted party that computes functionality FOT.
Instead, we define a simulator S0 that receives the real input of the receiver and internally
emulates the protocol ΠUC

OT with the adversary A by simply following the honest receiver’s
strategy. Finally, the output of the receiver in the internal emulation is just sent to the
external honest receiver (as part of the protocol ΠH0) that outputs it as its output. The
execution in this hybrid proceeds identically to the real execution.
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Hybrids H1,0 . . . ,H1,8κ2 : We define a collection of hybrid executions such that for every l′ ∈
[8κ2] hybrid H1,l′ is defined as follows. We modify the code of token TKPRF,l′

P2
by replacing

the function PRFγl′ with a truly random function fl′ . In particular, given a query u the
token responds with a randomly chosen κ bit string v, rather than running the original
code of M2. We maintain a list of A’s queries and responses so that repeated queries will
be consistently answered. It is simple to verify that the adversary’s view in every two
consecutive hybrid executions is computationally indistinguishable due to the security of
the pseudorandom function embedded within TKPRF,l′

P2
. Moreover, since the PRF key is

hidden from the sender, it follows from the pseudorandomness property that the views in
every two consecutive hybrid are computationally indistinguishable. As in the previous
hybrid, the simulator hands the output of the receiver in the internal emulation to the
external receiver as part of the protocol ΠH1,l′ . More formally, we have the following
claim,

Claim 13. For every l′ ∈ [8κ2], Hybrid1,l′−1
c≈ Hybrid1,l′ .

Hybrids H2,0 . . . ,H2,8κ2 : This sequence of hybrids executions is identical to hybrid H1,8κ2

except that here S2 aborts if two queries made by A to the token TKPRF,l′
P2

results in the
same response. Using a proof analogous to Lemma 9, we obtain the following claim.

Claim 14. For every l′ ∈ [8κ2], Hybrid2,l′−1
s≈ Hybrid2,l′ .

Hybrid H3: In this hybrid, S3 proceeds identically to S2,8κ2 using the honest receiver’s input b
with the exception that it does not report the output of the receiver as what is computed
in the emulation by the simulator. Instead, S3 follows the code of the actual simulator to
extract (s0, s1) and sets the receiver’s output as sb. Note that the view of the adversary is
identical in both hybrids H2,8κ2 and H3. Therefore, to prove the indistinguishability of the
joint output distribution, it suffices to show that the output of the honest receiver is the
same. On a high-level, this will follow from the fact that if the honest receiver does not
abort then the two checks performed by the receiver, namely, the shares validity check and
the shares consistency check were successful, which would imply that there are at least
κ+ 1 good columns from which the simulator can extract the shares. Finally, we conclude
that the reconstruction performed by the honest receiver and the simulator will yield the
same value for sb.
More formally, we argue indistinguishability conditioned on when the two consistency
checks pass in the execution emulated by the simulator (in the event at least one of them
do not pass, the receiver aborts and indistinguishability directly holds). Then, the following
hold for any s ∈ ω(logn):

Step 1: Since the shares validity check passed, following a standard cut-and-choose ar-
gument, it holds except with probability 2−O(s) that there are at least κ− s rows for
which φ(Ab[i, ·]) + φ(Bb[i, ·]) = 0. In fact, it suffices if this holds at least for one row,
say i∗. For b ∈ {0, 1}, let the secret corresponding to Ab[i∗, ·] +Bb[i∗, ·] be s̃b.
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Step 2: If for any column j ∈ [2κ] and b ∈ {0, 1} there exists a value γj such that for all
i ∈ [κ]

γb[j] = Ab[i, j] +Bb[i, j],

then, combining with Step 1, we can conclude that γb[j] = Ab[i∗, j]+Bb[i∗, j]. Further-
more, if either the receiver or the simulator tries to extract the share corresponding
to that column it will extract γb[j] since the commitments made by the sender are
binding. Therefore, we can conclude that if either the receiver or the simulator tries
to reconstruct the secret for any b ∈ {0, 1}, it will reconstruct only with shares in
{γb[j]}j∈J which implies that they reconstruct only s̃b.

Step 3: Now, since the shares consistency check passed, following another cut-and-choose
argument, it holds except with probability 2−O(s) that there is a set J of at least 2κ−s
columns such that for any j ∈ J the tokens do not abort on a valid input from the
receiver and yield consistent values for both bj = 0 and bj = 1. This means that if
the honest receiver selects 3κ/4 columns with input as its real input b, the receiver
is guaranteed to find at least κ + 1 indices in J . Furthermore, there will be κ + 1
columns in J for both inputs for the simulator to extract and when either of them
extract they can only extract s̃b.

Then to prove indistinguishability in this hybrid, it suffices to prove that the simulator
reconstructs sb if and only if the receiver extracts sb and this follows directly from Step
3 in the proceeding argument, since there is a unique value s̃b that either of them can
reconstruct and they will reconstruct that value with probability 1−2−O(s) if the two checks
pass. As the checks are independent of the real input of the receiver, indistinguishability
of the hybrids follow.

Claim 15. Hybrid2,8κ2
s≈ Hybrid3

Hybrid H4: In this hybrid, S4 proceeds identically to S3 with the exception that the simulator
sets the receiver’s input in the main execution as 0 instead of the real input b. Finally, it
reconstructs sb and sets that as the honest receiver’s output. It follows from Lemma 5.5.1
that the output of H3 and H4 are statistically-close. Therefore, we have the following
claim,

Claim 16. Hybrid3
s≈ Hybrid4

Hybrid H5: In this hybrid, we consider the simulation. Observe that our simulator proceeds
identically to the simulation with S4 with the exception that it communicates with FgWRAP

instead of creating/sending the tokens by itself and further it feeds the extracted values
s0 and s1 to the ideal functionality while S4 instead just outputs sb. Furthermore, the
ideal simulator sends (s0, s1) to the FOT functionality. It follows from our simulation
that the view of the adversary in H5 and the ideal execution are identically distributed.
Furthermore, for both b = 0 and b = 1 we know that the value sb extracted by the simulator
and the value output by the honest receiver in the ideal execution are equal. Therefore,
we can conclude that the output of H4 and the ideal execution are identically distributed.
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Claim 17. Hybrid4 ≈ Hybrid5

Simulating the corrupted P2. We begin by describing our simulation:

1. S communicates with FgWRAP on behalf of the honest parties by sending create messages
{(Create, sid, P1, P2,midl,M1)}l∈[3κ], where the code M1 implements truly random func-
tions (that is, M1 is encoded with a lookup table that includes some polynomial number
of queries bounded by the running time of the adversary). Then FgWRAP forwards these
tokens by sending receipt messages {(Receipt, sid, P1, P2,midl,M1)}l∈[3κ] to A. For each
query u ∈ {0, 1}5κ made by A to the tokens TKPRF,l

P1
, functionality FgWRAP runs M1 on

that query and returns a random v from {0, 1}κ.

2. A communicates with FgWRAP on behalf of the corrupted parties by sending create mes-
sages to the functionality {(Create, sid, P2, P1,midl′ ,M2)}l′∈[8κ2]. Then, the functional-
ity FgWRAP forwards these tokens to the honest parties by sending receipt messages
{(Receipt, sid, P2, P1,midl′ ,M2)}l′∈[8κ2].

3. Upon receiving acknowledgement messages {(Receipt, sid, P2, P1,midl′ ,M2)}l′∈[8κ2] that all
[8κ2] tokens have been created by A, and upon receiving the first message from A, i.e. the
commitments combj and comci where i ∈ [κ] and j ∈ [2κ], S tries to extract b by sending a
retrieve message (retreive, sid) to FgWRAP which returns the list Qsid of illegitimate queries.
For this, just as in previous simulations, it first extracts all the bj values and then sets the
receiver’s input as that bit that occurs at least κ+ 1 times among the bj ’s. If no such bit
exists, it sets b to be random. Next it sends b to the FOT functionality to obtain sb, and
completes the protocol following the honest sender’s code with inputs (s0, s1) where s1−b
is set to random. In particular, it computes Cb = xb+sb and sets C1−b to a random string.

Proof. Our proof follows by a sequence of hybrid executions defined below.

Hybrid H0: In this hybrid game there is no trusted party that computes functionality FOT.
Instead, we define a simulator S0 that receives the real input of the sender and internally
emulates the protocol ΠUC

OT with the adversary A by simply following the honest sender’s
strategy. Finally, the output of the sender in the internal emulation is just sent to the
external honest sender (as part of the protocol ΠH0) that outputs it as its output. The
execution in this hybrid proceeds identically to the real execution.

Hybrids H1,0 . . . ,H1,3κ: We define a collection of hybrid executions such that for every l ∈ [3κ]
hybrid H1,l is defined as follows. We modify the code of token TKPRF,l

P1
by replacing the

function PRFγl with a truly random function fl. In particular, given a query u the token
responds with a randomly chosen κ bit string v, rather than running the original code
of M1. We maintain a list of A’s queries and responses so that repeated queries will be
consistently answered. In addition, the code of token TKl (for l ≤ 2κ) or T̂Kl−2κ (for
2κ + 1 ≤ l ≤ 3κ) is modified, as now this token does not run a check with respect to
the PRF that is embedded within token TKPRF,l

P1
but with respect to the random func-

tion fl. It is simple to verify that the adversary’s view in every two consecutive hybrid
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executions is computationally indistinguishable due to the security of the pseudorandom
function PRFγl . Moreover, since the PRF key is hidden from the receiver, it follows from
the pseudorandomness property that the views in every two consecutive hybrid are compu-
tationally indistinguishable. As in the previous hybrid, the simulator hands the output of
the sender in the internal emulation to the external receiver as part of the protocol ΠH1,l .
More formally, we have the following claim,

Claim 18. For every l ∈ [3κ], Hybrid1,l−1
c≈ Hybrid1,l.

Hybrids H2,0 . . . ,H2,3κ: This sequence of hybrids executions is identical to hybrid H1,3κ except
that here S2 aborts if two queries made by A to the token TKPRF,l

P1
results in the same

response. Using a proof analogous to Lemma 9, we obtain the following claim.

Claim 19. For every l ∈ [3κ], Hybrid2,l−1
s≈ Hybrid2,l.

Hybrid H3: In this hybrid execution, simulator S3 plays the role of the sender as in hybrid
H2,3κ except that it extracts the adversary’s input bit b as carried out in the simulation by
S and the challenge string c. Clearly, this does not make any difference to the receiver’s
view which implies that,

Claim 20. Hybrid2,3κ
s≈ Hybrid3.

Hybrid H4: In this hybrid execution, the simulator instead of creating the original tokens
{TKj}j∈[2κ], simulator S4 emulates functionalities {T̃Kj}j∈[2κ] in the following way. For
all j ∈ [2κ], if T̃Kj is queried on (bj , decombj ) and decombj is verified correctly, S4 outputs
the column

(Abj [·, j], decomAbj [·,j], Bbj [·, j], decomBbj [·,j])

where bj is the bit extracted by S4 as in the prior hybrid. Otherwise, if T̃Kj is queried
on (1− bj , decom1−bj ) then S4 outputs ⊥. Following the same argument as in Claim 10 it
follows that the commitments made by the receiver are binding and thus a receiver will not
be able to produce decommitments to obtain the value corresponding to 1− bj . Therefore,
we have the following claim.

Claim 21. Hybrid3
s≈ Hybrid4.

Hybrid H5: In this hybrid execution, instead of creating the original tokens {T̂Ki}i∈[κ], simu-
lator S5 emulates functionalities {TKi}i∈[κ] in the following way. For all i ∈ [κ], if TKi is
queried on (ci, decomci) and decomci is verified correctly, S5 outputs the row

(A0[i, ·], decomA0[i,·], A1[i, ·], decomAi[i,·]), if ci = 0
(B0[i, ·], decomB0[i,·], B1[i, ·], decomBi[i,·]), if ci = 1

where ci is the bit extracted by S5 as in the prior hybrid. Otherwise, if TKi is queried on
(1−ci, decom1−ci) then S5 outputs ⊥. Indistinguishability follows using the same argument
as in the previous hybrid. Therefore, we have the following claim.
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Claim 22. Hybrid4
s≈ Hybrid5.

Hybrid H6: In this hybrid, the simulator S6 chooses an independent random string x∗ ← Zp
instead of generating the matrices A1−b and B1−b according to the shares of x1−b. We
remark that C1−b = s1−b + x1−b is still computed as in H5 with x1−b.

Claim 23. Hybrid5
s≈ Hybrid6.

Proof: Let Ã1−b, B̃1−b contain the same entries as A1−b, B1−b in H5 with the exception
that the entries whose decommitments have been removed both in TK and T̃K as described
in hybrids H4 and H5 are set to ⊥. More precisely, given the extracted values for bj ’s and
ci’s, for every j ∈ [2κ] such that bj = b, Ã1−b(i, j) = ⊥ if ci = 1 and B̃1−b(i, j) = ⊥ if
ci = 0 for all i ∈ [κ].
Observe that, for every i, j, either Ã1−b[i, j] = A1−b[i, j] or Ã1−b[i, j] = ⊥. The same holds
for the B̃1−b. We claim that the information of at most κ shares of x1−b is present in
matrices Ã1−b, B̃1−b. To this end, for every column j such that bj 6= 1 − b and for every
row i, depending on ci, either Ã1−b[i, j] = ⊥, or B̃1−b[i, j] = ⊥. For every pair i, j, since
A1−b[i, j] and B1−b[i, j] are both uniformly distributed, obtaining the value for at most
one of them keeps A1−b[i, j] + B1−b[i, j] statistically hidden. Now, since bj 6= 1 − b for at
least κ+ 1 shares, it follows that at least κ+ 1 shares of x1−b are hidden. In other words,
at most κ shares of x1−b can be obtained by the receiver in H5. Analogously at most κ
shares of x∗ are obtained in H6. From our secret-sharing scheme, it follows that κ shares
information theoretically hides the value. Therefore, the decommitments obtained by the
receiver in H5 and H6 and identically distributed. The claim now follows from the fact that
the commitments to the matrices (comA0 , comB0 , comA1 , comB1) are statistically-hiding. 2

Hybrid H7: In this hybrid execution simulator S7 does not know the sender’s inputs (s0, s1),
but rather communicates with a trusted party that computes FOT. S7 behaves exactly
as S6, except that when extracting the bit b, it sends it to the trusted party which sends
back sb. Moreover, S7 uses random values for s1−b and C1−b. Note that since the value
committed to in the matrices corresponding to 1− b is independent of x1−b, this hybrid is
identically distributed to the previous hybrid. We conclude with the following claim.

Claim 24. Hybrid6 ≡ Hybrid7.

Hybrid H8: In this hybrid execution, tokens {TKj}j∈[2κ] are created instead of tokens
{T̃Kj}j∈[2κ]. In addition, tokens {T̂Ki}i∈[κ] are created instead of tokens {T̃Ki}i∈[κ]. Due
to similar claims as above, it holds that

Claim 25. Hybrid7
c≈ Hybrid8.

Finally, we note that hybrid H8 is identical to the simulated execution which concludes the
proof.
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On relying on one-way functions. In this protocol the only place where one-way permuta-
tions are used is in the commitments made by the sender in the second round of the protocol via
a non-interactive perfectly-binding commitment. This protocol can be easily modified to rely on
statistically-binding commitments which have two-round constructions based on one-way func-
tions [Nao91]. Specifically, since the sender commits to its messages only in the second-round,
the receiver can provide the first message of the two-round commitment scheme along with the
first message of the protocol.

5.5.1 Two-Round 2PC Using Stateless Tokens

In [IKO+11], the authors provide a two-round UC secure protocol in the OT-hybrid between a
sender and a receiver where the receiver obtains the output of the computation at the end of the
second round. First, we observe that we can repeat our OT protocol in parallel. Then, obtaining
UC secure two-party computation using tokens is carried out by running the two-round protocol
of [IKO+11] in parallel with our OT protocol. Namely, upon receiving the second message for the
[IKO+11] and OT protocols, the receiver computes the OT outcome and uses these to compute
the outcome of the [IKO+11] protocol.

In more details, in order to achieve simulation when the sender is corrupted, we rely on
the receiver simulation for both our OT protocol and the [IKO+11] protocol. Next, we observe
that, after the simulation submits the receiver’s first message, it can extract the sender’s input
by extracting the sender’s input to the OT tokens. To achieve simulation when the receiver is
corrupted, the simulator first extracts the receiver’s input by extracting the receiver’s input to
the OT tokens. Then the simulation queries the ideal functionality to obtain the output of the
function evaluation on their private inputs. Using the output, the simulator next sets up the
OT part of the sender’s message using the OT simulation and submits the [IKO+11] sender’s
message using the [IKO+11] simulation. Thus, we obtain the following theorem:

Theorem 5.5.2. Assuming one-way functions, there exists a two-round two-party protocol for
any well-formed functionality that is GUC secure in the presence of static malicious adversaries.

5.5.2 GUC-Secure MPC using Stateless Tokens from One-Way Functions

From the work of [IPS08], we know that assuming one-way functions, there exists a multiparty
protocol in the OT-hybrid to securely realize any well-formed functionality with UC-security.
Since, we realize the GUC-OT functionality combining with the works of [IPS08] we obtain the
following corollary:

Theorem 5.5.3. Assuming one-way functions, there exists a O(df ) multi-party protocol for any
well-formed functionality f that is GUC secure in the presence of static malicious adversaries
where df is the depth of the circuit implementing the function f .

We refer the reader to the full version for our three round multi-party computation protocol.
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5.6 Issue with Over Extraction in Oblivious Transfer
Combiners [GIS+10]

In the following we identify an issue that affects one of the feasibility results in [GIS+10, Section
5]. More precisely, this result establishes that UC security for general functionalities is feasible
in the tamper-proof hardware model in O(κ)-round assuming only OWFs (or O(1)-round based
on CRHFs) based on stateless tokens. The issue arises as a result of over extraction where
a fully-secure OT protocol is constructed from a weaker variant and the simulation extracts
values for sender’s inputs even on certain executions where the receiver aborts. The term over
extraction has been studied before in the context of commitment schemes where a scheme with
over extraction is constructed as an intermediate step towards achieving full security [PW09,
GLOV12].

On a high-level, in the work of [GIS+10], they first construct an OT protocol with milder
security guarantees. More precisely, a QuasiOT protocol achieves UC-security against a mali-
cious receiver and straight-line extraction against malicious sender. However, the scheme is not
fully secure as a malicious sender can cause an input-dependent abort for an honest receiver.
Towards amplifying the security, [GIS+10] consider the following protocol:

1. The sender with input (s0, s1) and receiver with input b interact in n executions of Qua-
siOTs. The sender picks z1, . . . , zn and ∆ at random and sets the inputs to the ith QuasiOT
instance as (zi, zi + ∆). The receiver on the other hand chooses bits b1, . . . , bn at random
subject to the sum being its input b.

2. If the first step completes, the sender sends (s′0 = s0 +
∑
i zi, s

′
1 = s1 +

∑
i zi + ∆) to the

receiver. The receiver computes its output as s′b +
∑
iwi where wi is the output of the

receiver in the ith QuasiOT.

This protocol remains secure against a malicious receiver. However, an issue arises with a
malicious sender. To simulate a malicious sender in this protocol, [GIS+10] rely on the straight-
line extractor of the n QuasiOTs by sampling two sets of random (b1, . . . , bn), one set summing
up to 0 and another set summing up to 1 and computing what the receiver outputs in the
two cases. As we demonstrate below such a strategy leads to failure in the simulation. More
precisely, consider the following malicious sender strategy.

• Pick z1, z2, ..., zn−1 and ∆ at random.

• The inputs of the first n− 1 tokens are set to z1, z1 + ∆, . . . , zn−1, zn−1 + ∆.

• Let z1 + . . .+ zn−1 = a and z1 + . . .+ zn−1 + ∆ = b.

• The inputs to the n-th token are some fixed values c (when bn = 0) and d (when bn = 1),
where c+ d 6= ∆.

Next, the sender modifies the code of the tokens used in the QuasiOT protocol so that the
first n − 1 QuasiOTs never abort. The n-th instantiations however is made to abort whenever
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the input bn, the receiver’s input is 1. Let s0 = 0 and s1 = 1 (we remark that we are not
concerned about the actual inputs of the sender, but focus on what the receiver learns). We
next examine the honest receiver’s output in both the real and ideal worlds. First, in the real
world the honest receiver learns an output only if bn = 0 (since the n-th token aborts whenever
bn = 1). We consider two cases:

Case 1: The receiver’s input is b = 0. Then bn = 0 with probability 1/2, and bn = 1 with
probability 1/2. Moreover, when bn = 0, the sum of the outputs obtained by the receiver
is a+ c. This is because when bn = 0, then, b1 + . . .+ bn−1 = 0, and the receiver learns a
as the sum of the outputs in the the first n− 1 QuasiOTs and c from the n-th QuasiOT.
On the other hand, if bn = 1 then the receiver aborts in the n-th QuasiOT and therefore
aborts.

Case 2: The receiver’s input is b = 1. Similarly, in this case the receiver will learn b + c with
probability 1/2 and aborts with probability 1/2.

In the ideal world, the simulator runs first with a random bit-vector and extracts its inputs in
the QuasiOTs by monitoring the queries to the corresponding PRF tokens. Next, it generates
two bit-vectors bi’s and b′i’s that add up to 0 and 1, respectively, and computes the sums of
the sender’s input that correspond to these bits. Then the distribution of these sums can be
computed as follows:

Case 1: In case that
∑
bi = 0, then bn = 0 with probability 1/2, and bn = 1 with probability

1/2. In the former case the receiver learns a+ c, whereas in the latter case it learns b+ d.

Case 2: In case that
∑
b′i = 1, then with probability 1/2, b′n = 0 and with probability 1/2,

b′n = 1. In the former case the receiver learns b+ c, whereas in the latter it learns a+ d.

Note that this distribution is different from the real distribution, where the receiver never learns
b + d or a + d since the token will always abort and not reveal d. We remark that in our
example the abort probability of the receiver is independent of its input as proven in Claim 17
in [GIS+10], yet the distribution of what it learns is different.

On a more general note, our attack presents the subtleties that need to be addressed with the
“selective” abort strategy. Recent works by Ciampi et al. [COSV16b, COSV16c] have identified
subtleties in recent construction of non-malleable commitments [GRRV14] where selective aborts
were not completely addressed.
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Chapter 6

Secure Computation in the CRS model
In this chapter we present adaptively secure MPC protocols in the CRS model based on our

works in [GP15, DPR16]. See Section 2.1.2 for a detailed overview of our contributions.

6.1 Two-Round MPC for Arbitrary Adaptive Corruptions

Overview. Adaptively secure MPC first studied by Canetti, Feige, Goldreich, and Naor in
1996, is a fundamental notion in cryptography. Adaptive security is particularly hard to achieve
in settings where arbitrary number of parties can be corrupted and honest parties are not trusted
to properly erase their internal state. We did not know how to realize constant round protocols
for this task even if we were to restrict ourselves to semi-honest adversaries and to the simpler
two-party setting. Specifically the round complexity of known protocols grows with the depth
of the circuit the parties are trying to compute.

In this section, using indistinguishability obfuscation, we construct a UC two-round MPC
protocol secure against any active, adaptive adversary corrupting an arbitrary number of parties.

6.1.1 Techniques

The key technical tool that we use in our construction is obfuscation so let us start by recalling
it briefly.

Obfuscation. Obfuscation was first rigorously defined and studied by Barak et al. [BGI+12].
Most famously, they defined the notion of virtual black box (VBB) obfuscation, and proved that
this notion is impossible to realize in general — i.e., there exist functions, though a bit unnatural,
that are VBB unobfuscatable.

Barak et al. also defined a weaker notion of indistinguishability obfuscation (iO), which
avoids their impossibility results. Indistinguishability obfuscation requires that for any two
circuits C0, C1 of similar size that compute the same function, it is hard to distinguish an
obfuscation of C0 from an obfuscation of C1. In a recent result, Garg et al. [GGH+13b] proposed
a construction of iO for all circuits, basing security on assumptions related to multilinear maps
[GGH13a].

Starting point — Garg et al. [GGHR14] construction. In a recent work, Garg et
al. [GGHR14] constructed a two-round multiparty computation protocol secure against static
adversaries. Though our goal is to realize a protocol secure in the adaptive setting it would be
illustrative to see how Garg et al.’s construction works.

With the goal of explaining intuition [GGHR14] better we will describe the ideas assuming we
have access to VBB obfuscation, rather than just indistinguishability obfuscation. We start by
noting that two rounds of interaction are essential for realizing multiparty secure computation.

107



This is because a 1-round protocol is inherently susceptible to the “residual function" attack in
which a corrupted party could repeatedly evaluate the “residual function" with the inputs of
the honest parties fixed on many different inputs of its own (e.g., see [HLP11]). This attack
can be circumvented by having two rounds of interaction — where in the first round the parties
commit to their inputs and the output is generated only in the second round. The first round
commitments help guarantee that the “residual function" attack can not be performed in this
setting.

The key idea of the Garg et al. construction is to have every party commit to its input along
with its randomness in the first round. The second round of the Garg et al. protocol is actually
a simple compiler: it takes any (possibly highly interactive) underlying MPC protocol, and has
each party obfuscate their “next-message" function in that protocol, providing one obfuscation
for each round. This enables each party to independently evaluate the obfuscations one by
one, generating messages of the underlying MPC protocol and finally obtain the output. Party
i’s next-message circuit for round j in the underlying MPC protocol depends on its input xi
and randomness ri (which are hard-coded in the obfuscation). This circuit takes as input the
transcript through round j − 1, and it produces as output the next broadcast message.

However, there is another complication. Unlike the initial interactive protocol being com-
piled, the obfuscations are susceptible to a “reset" attack – i.e., they can be evaluated on multiple
inputs. To prevent such an attack, we need to limit the obfuscations to be used for evaluation
only on a unique set of values – namely, values consistent with the inputs and randomness that
the parties committed to in the first round, and the current transcript of the underlying MPC
protocol. Note that this would implicitly fix the transcript to a unique value. To ensure this
consistency, Garg et al. [GGHR14] use non-interactive zero-knowledge (NIZK) proofs. Since the
NIZKs apply not only to the committed values of the first round, but also to the transcript as
it develops in the second round, the obfuscations themselves must also generate these NIZKs
“on the fly". In other words, the obfuscations are now augmented to perform not only the next-
message function, but also to prove that their output is consistent with their input, randomness
and transcript so far. Also, obfuscations in round j of the underlying MPC protocol verify
NIZKs associated to obfuscations in previous rounds before providing any output.

Garg et al. show that this construction can be adapted so that security can be based on
indistinguishability obfuscation alone but we will not delve into that. Instead we will argue that
this approach is fundamentally problematic for achieving the task at hand.

Our approach – starting afresh. Note that the above intuitive description uses multiple
obfuscations that are generated by honest parties. This however only works in the static setting
and our goal is adaptive security. The challenge in proving adaptive security is that, a simulator
would have a hard time explaining these obfuscations as being honestly generated. Towards
solving this problem we first would like to limit the use of obfuscation in our construction;
specifically not requiring honest parties to generate any obfuscations.

Still assuming we have access to VBB obfuscation, we need a fresh direction to solve the
above problem. Here is our first stab at the problem: assume the parties had access to a
trusted third party. In this case each party could encrypt its input and deliver it to the trusted
party. The trusted party could then decrypts these values to obtain the inputs of all the parties,
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compute the function on the inputs and then deliver the output back to the parties. Our idea is
to have an obfuscated program given out as part of the CRS implement this trusted party. Just
like the Garg et al. construction, in order to make this construction secure against “residual
function” attack we will need to consider a setting with two rounds. In the first round, we will
have all parties commit to their inputs and then in the second round we will have them provide
encryptions of the openings previously committed.

Making this construction adaptively secure seems more amenable — specifically, by using
adaptive commitments for the first round and a deniable encryption scheme for the second.
We actually need the first round commitments to be simulation extractable. This allows our
simulator to extract the values committed to by the adversary on behalf of corrupted parties,
even as it equivocates on its own commitments. Once the simulator has access to the inputs of
the corrupted outputs it can force the output by including it in its own second round encryption.

Basing it on Indistinguishability Obfuscation. The protocol described so far relies on
VBB and we would like to instantiate our construction based on iO. The CRS of the scheme
includes an obfuscation that takes as input encryptions of inputs of all the parties and computes
the desired functionality on their decryptions. A reader might have observed that this bears
resemblance with functional encryption or even multi-input functional encryption [GGG+14].
One might wonder if the use of “two key trick” can help us realize this construction using just
indistinguishability obfuscation — in a way similar to the functional encryption construction
of Garg et al. [GGH+13b]. In particular the idea would be that each party encrypts its input
along with the opening twice under two different keys and attach along with them a NIZK proof
proving that they indeed encrypt the same value.

Unfortunately, this solution is fundamentally problematic as we are in the adaptive setting.
Even if we were to use an adaptively secure NIZK the problem is that NIZKs given on deniable
encryptions are useless. This is because the encryption scheme is deniable. The deniability of
the encryption scheme allows the adversary to encrypt two different plaintexts under the two
public keys but still succeed in explaining them as encrypting the same message. This also allows
the attacker to successfully prove that the two ciphertexts indeed encrypt the same message.

In summary, what we really need is a system with two ciphertexts and a proof proving that
the two ciphertexts encrypt the same message with the property that only valid proofs exists.
Additionally we need the property that both the ciphertexts and the proof can be denied upon
in the proof of security. These requirements indeed seem to be in conflict with each other. For
example, simultaneously achieving perfect soundness for NIZK and the ability to explain the
simulated proofs as though they were honestly generated seems like a bottleneck.

Our solution to this seemingly paradoxical problem is to first construct a two key encryption
scheme which comes attached with a NIZK and then build deniability on top of it. In particular,
the underlying core encryption scheme consists of two copies of a perfectly correct encryption
scheme along with a NIZK proving that the two ciphertexts encrypt the same message and it
is combined with a language which also binds it with the commitments of the first round. The
NIZK we use will have statistical soundness. This underlying encryption scheme is then made
deniable using the Sahai and Waters [SW14] Universal Deniable Encryption (UDE) transforma-
tion. Briefly, UDE takes any encryption scheme and converts it to deniable so that ciphertexts
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are still indistinguishable from the usual ciphertexts of the underlying core encryption. Our
resulting encryption is deniable in a very strong sense — specifically, it allows the encryptor
to deny not just on the two ciphertexts but also on the NIZK directly. However, interestingly
proofs for invalid statements do not exist.

Finally various other technical challenges arise in the security proof. For example, in the
proof of security the simulator needs to hardcode the output that the adversary gets as part
of its ciphertext in a way that remains indistinguishable from an honest execution. In order
to force the output, the core encryption scheme which is plugged into the UDE transformation
is combined with a ’trapdoor’ language. In its trapdoor mode, the simulator can in particular
plant the output of the function inside the encryptions it generates on behalf of honest parties.
Then the obfuscation checks for such a trapdoor and acts accordingly. We refer the reader to
the full construction and proof for details on how we resolve this and other issues.

6.1.2 Application to leakage tolerant protocols

As another application of our techniques, we observe that our adaptively secure protocol is also
leakage tolerant in a way that previous protocols failed to be. The study of leakage tolerant
protocols was initiated by Bitansky et al. [BCH12] and Garg et al. [GJS11]. Very roughly, leakage
tolerant protocols preserve security even when the adversary can obtain arbitrary leakage on
the entire internal state of honest parties, however only up to the leaked information.

One limitation of known leakage tolerant secure computation protocols [BGJ+13] (see also
[DHP11]) from the literature is that the leakage in the ideal world queries needs to depend on
the inputs of all honest parties rather than just on the input of the party being leaked upon. Our
adaptively secure protocol also turns out to be leakage resilient further avoiding this limitation.
Another advantage of our protocol is that it is much simpler than the Boyle et al. [BGJ+13]
construction.

In a recent result, Garg et al. [GGKS14] show an alternative way of avoiding this limitation,
without using indistinguishability obfuscation. However their result is restricted to a setting
where at least one of the parties is never leaked on. We do not make such an assumption.

6.1.3 Preliminaries in the CRS Model

In this section we recall preliminary notions needed in this work. We will start by recalling
notions of indistinguishability obfuscation and non-interactive zero-knowledge. Next we recall
the notion of publicly deniable encryption scheme that we adapt from [SW14].

6.1.3.1 Notation

Throuhgout this section λ ∈ N will denote the security parameter. We say that a function
f : N → R is negligible if ∀c ∃ nc such that if n > nc then f(n) < n−c. We will use negl(·)
to denote an unspecified negligible function. We often use [n] to denote the set {1, ..., n}. The
concatenation of a with b is denoted by a||b. Moreover, we use d← D to denote the process of
sampling d from the distribution D or, if D is a set, a uniform choice from it. If D1 and D2 are
two distributions, then we denote that they are statistically close by D1 ≈s D2; we denote that
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they are computationally indistinguishable by D1 ≈c D2; and we denote that they are identical
by D1 ≡ D2.

6.1.3.2 Indistinguishability Obfuscators

We will start by recalling the notion of indistinguishability obfuscation (iO) recently realized
in [GGH+13b] using candidate multilinear maps [GGH13a].

Definition 6.1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function
α such that the following holds: For all security parameters λ ∈ N, for all pairs of circuits
C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then

∣∣∣Pr
[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ negl(λ)

6.1.3.3 Non-Interactive Zero-Knowledge Proofs

Let R be an NP-relation. For pairs (x,w) ∈ R we call x the statement and w the witness. Let
L be the language consisting of statements in R. A Non-Interactive Zero Knowledge (NIZK)
Proof system [BFM90, FLS90] consists of three PPT algorithms (K,P, V ), a common reference
string generation algorithm K, a prover P and a verifier V .

• K(1λ) expects as input the unary representation of the security parameter λ and outputs
a common reference string σ of length Ω(λ).

• P (σ, x, w) takes as input a common reference string σ, a statement x together with a
witness w such that R(x,w) and produces a proof π.

• V (σ, x, π) takes as input a common reference string σ, a statement x, a proof π and outputs
1 if the proof is accepting and 0 otherwise.

We call (K,P, V ) a non-interactive proof system for R if it satisfies the following properties.
Perfect completeness. A proof system is complete if an honest prover with a valid witness
can convince an honest verifier. Formally, ∀x ∈ L, ∀w witness of x

Pr
[
σ ← K(1λ);π ← P (σ, x, w) : V (σ, x, π) = 1

]
= 1.

Statistical soundness. A proof system is sound if it is infeasible to convince an honest verifier
when the statement is false. Formally, we have

Pr
[
σ ← K(1λ);∃(x, π) : x 6∈ L ∧ V (σ, x, π) = 1

]
< negl(λ).
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Computational zero-knowledge. We say a non-interactive proof (K,P, V ) is computational
zero-knowledge if there exists a PPT simulator S = (S1, S2), where S1 returns a simulated
common reference string σ̃ together with a simulation trapdoor τ that enables S2 to simulate
proofs without having access to the witness. For all non-uniform PPT adversaries A = (A1,A2)
we have:

∣∣∣∣∣Pr
[
σ ← K(1λ); (x, state)← A1(σ);π ← P (σ, x, w) : A2(x, σ, π, state) = 1

]
−

Pr
[
(σ, τ)← S1(1λ); (x, state)← A1(σ);π ← S2(σ, τ, x) : A2(x, σ, π, state) = 1

]∣∣∣∣∣ < negl(λ).

6.1.3.4 Double Key Encryption and its Deniable Variant

Our protocol will use a special publicly deniable encryption scheme that we construct by first
describing a special public-key encryption scheme that we then transform it to its deniable
variant using the Universal Deniable Encryption (UDE) transformation of [SW14].

Let (Setup,Enc,Dec) be a perfectly correct IND-CPA secure public-key encryption scheme
and let (K,P , V ) be a NIZK proof system with statistical soundness and computational zero-
knowledge. The special encryption scheme we consider is very similar to the Naor-Yung CCA
[NY90] secure encryption scheme. Recall that in the Naor-Yung construction a ciphertext con-
sists of encryption of a message under two different public keys and a NIZK proof certifying that
the two ciphertexts indeed encrypt the same message. In our encryption scheme a ciphertext
will also consist of two ciphertexts under the two public keys but the NIZK proof will be used
to certify a more sophisticated requirement. More formally:

Definition 6.2 (Double Key Encryption Scheme). Let (Setup,Enc,Dec) be a IND-CPA secure
encryption scheme with perfect correctness. Let (K,P , V ) be a NIZK proof system for an NP -
Language L. A Double Key encryption scheme, parametrised by a language L, consists of three
algorithms DKL = (SetupDK,EncDK,DecDK).

• SetupDK(1λ, 1`) is a polynomial time procedure that takes as input the unary representation
of the security parameter λ, the description of length of messages encrypted 1`. It computes
(pk0, sk0), (pk1, sk1) ← Setup(1λ) and the common reference string σ ← K(1λ) for the
NIZK proof. It outputs the public key pk = (pk0, pk1, σ) and the secret key sk = (sk0, sk1).

• EncDK(pk,m0,m1, aux, w; r): This polynomial time procedure takes as input public key
pk = (pk0, pk1, σ), messages m0,m1 ∈ {0, 1}`, auxiliary information aux and some w which
will be used as part of the witness for the language L. It generates c = Enc(pk0,m0; s0) and
c′ = Enc(pk1,m1; s1) and outputs (c, c′, π), where π ← P (σ, (c, c′, aux), (m0,m1, s0, s1, w))
for the language L.

• DecDK(pk, sk, (c, c′, π)): is a polynomial time procedure that takes as input pk =
(pk0, pk1, σ), sk = (sk0, sk1) and ciphertext (c, c′, π). Outputs ⊥, in case that
V (σ, (c, c′, aux), π) = 0 else output (Dec(sk0, c),Dec(sk1, c

′)).
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Double Key Deniable Encryption Scheme. Next we want to transform the above pub-
lic key encryption into its deniable variant using the UDE transformation of Sahai and Wa-
ters [SW14, Section 4.2]. In particular, once we plug the above DKL double key encryp-
tion scheme in the UDE transformation, we obtain a double key deniable encryption scheme
DDKL = (SetupDDK,EncDDK,
DecDDK,DenEncDDK,ExplainDDK) parametrized by the language L with associate relation RL
where the procedures EncDDK and DecDDK are same as EncDK and DecDK. Here SetupDDK is
obtained by augmenting the procedure SetupDK to additionally output a public denying key
DK generated using UniversalSetup(pk) as defined in [SW14, Section 4.2] which is going to be
included in pk. Further the scheme is augmented with the following two procedures where
pk = (σ, pk0, pk1, DK).

• DenEncDDK(pk,m0,m1, aux, w; r) is a polynomial time procedure that takes as input pk
which includes the public denying key DK, m0,m1 ∈ {0, 1}`, auxiliary information aux
and witness w and uses random coins r. It then outputs (c, c′, π).

• ExplainDDK(pk, (c, c′, π), (m0,m1, aux, w)): This polynomial time procedure takes as input
public key pk which includes the public denying key DK, messages m0,m1 ∈ {0, 1}`,
auxiliary information aux and witness w. It also takes as input a value (c, c′, π) and
outputs a string e, that is the same size as the randomness r taken by DenEncDDK above.

This new scheme has the following two additional properties.

Indistinguishability of source of ciphertext. We say that the scheme has indistinguisha-
bility of source of ciphertext if for any λ and any PPT adversary A = (A1,A2) the following
quantity can be upper bounded by a negligible function:∣∣∣∣∣∣∣∣∣∣

Pr


(pk, sk)← SetupDDK(1λ, 1`),
(m0,m1, aux, w)← A1(pk),
ct = EncDDK(pk,m0,m1, aux, w; r)
A2(pk, ct) = 1

 − Pr


(pk, sk)← SetupDDK(1λ, 1`),
(m0,m1, aux, w)← A1(pk),
ct = DenEncDDK(pk,m0,m1, aux, w; r)
A2(pk, ct) = 1


∣∣∣∣∣∣∣∣∣∣

Indistinguishability of explanation. We say that the scheme has indistinguishability of
explanation if for any λ and any PPT adversary A = (A1,A2) the following quantity can be
upper bounded by a negligible function:

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(pk, sk)← SetupDDK(1λ, 1`),
(m0,m1, aux, w)← A1(pk),
ct = DenEncDDK(pk,m0,m1, aux, w; r)

A2(pk, ct, r) = 1


− Pr



(pk, sk)← SetupDDK(1λ, 1`),
(m0,m1, aux, w)← A1(pk),
ct = DenEncDDK(pk,m0,m1, aux, w; r)
e = ExplainDDK(pk, ct, (m0,m1, aux, w))
A2(pk, ct, e) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣
113



6.1.3.5 Equivocal and Extractable Commitments

An Equivocal and Extractable Commitment scheme COM consists of a tuple of PPT algorithms
(Setupbind

Com, Setupequiv
Com ,Com,Extr,Equiv). We will describe our definitions for the setting of bit

commitment and note that they extend to the setting of strings in a natural way.

• Setupbind
Com(1λ) expects as input the unary representation of the security parameter λ and

outputs a public parameter CK together with a trapdoor µ (used for extraction).

• Setupequiv
Com (1λ) expects as input the unary representation of the security parameter λ and

outputs a public parameter CK together with trapdoors µ and ν (used for extraction and
equivocation).

• Com(CK, b; r) takes as input CK, a bit b ∈ {0, 1} and randomness r ∈ {0, 1}λ and outputs
a commitment β.

Let us define the following language (the extraction procedure Extr is defined below):

LCom = {(β, b) | ∃t : β = Com(CK, b; t) ∨ b = Extr(CK, t, β)}.

We note that the language naturally extends to a setting where commitments are defined over
strings instead of just bits. Also we defined associated relation RCom. The above commitment
scheme should satisfy the following properties.

Indistinguishability of Public Parameters. We require that:∣∣∣Pr
[
(CK,µ)←Setupbind

Com(1λ) : A(CK,µ) = 1
]
−

Pr
[
(CK,µ, ν)← Setupequiv

Com (1λ) : A(CK,µ) = 1
]∣∣∣ < negl(λ).

Computational Hiding. Hiding means that no computationally bounded adversary can dis-
tinguish as to which bit is locked in the commitment. Let A be any non-uniform adversary
running in time poly(λ). We say that the commitment scheme is computationally hiding if:

Pr
[
b = b′

∣∣∣∣∣ b← {0, 1}; (CK,µ)← Setupbind
Com(1λ);

β = Com(CK, b; r); b′ ← A(β)

]
= 1

2 + negl(λ) .

The same applies to the setup algorithm Setupequiv
Com .

Perfectly Binding. Intuitively speaking, binding requires that no (even unbounded) adversary
can open the commitment in two different ways. Here, we define the strongest variant known
as perfectly binding. Formally we require that for all (CK,µ) ← Setupbind

Com(1λ) there exists no
values (r0, r1) such that Com(CK, 0; r0) = Com(CK, 1; r1). For perfectly binding we require
that either (c, 0) ∈ LCom or (c, 1) ∈ LCom, but not both.

Polynomial equivocality. The setup algorithm Setupequiv
Com generates public parameters to-

gether with trapdoors µ and ν such that Equiv using ν is able to produce polynomially
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many fake commitments using the same CK which can then be explained to either 0 and
1. More formally, Equiv can be viewed as a pair of PPT algorithms (Equiv1,Equiv2) such that
the following holds. Let (CK,µ, ν) ← Setupequiv

Com (1λ) then (β, state) ← Equiv1(CK, ν) and
rb ← Equiv2(CK, ν, β, state, b) such that Com(CK, b; rb) = β. Furthermore we require that for
b ∈ {0, 1} the distribution of {(CK, β, rb)} generated in this way is computationally indistin-
guishable from the distribution {(CK, β, rb)} where β = Com(CK, b; rb).

Simulation extractability. We require that the commitment remains binding for any ad-
versary A, even after A obtains polynomially many equivocal commitments generated by Equiv
along with their openings. More formally, it should hold that

Pr
[
b 6= b′

∣∣∣∣∣ (CK,µ, ν)← Setupequiv
Com (1λ); (β, b, r)← AEquiv∗(CK,ν)(CK);

Com((CK, b, r) = β ∧ Extr(CK,µ, β) = b′

]
= negl(λ) .

where Equiv∗ is either invoked as Equiv1 without revealing the state, or as Equiv2 which only
expects as input fake commitments generated by previous invocations of Equiv1.

In this paper, we use the non-interactive equivocal and extractable commitment scheme of
[CLOS02] (CLOS commitment) which assumes the existence of enhanced trapdoor permutations.
At the heart of their commitment scheme is the Feige-Shamir trapdoor commitment scheme
[FS90b], which they transform to obtain a UC Commitment scheme secure against adaptive
adversaries.

6.1.4 Our Protocol

In this section we will present our adaptively secure two-round MPC protocol, described in
Figure 1. For simplicity, we assume that the delivered messages are authenticated. Also for
simplicity of exposition, in the sequel, we will assume that random coins are an implicit input
to the commitment and encryption functions, unless specified explicitly.

Theorem 6.1. Let f be any deterministic poly-time function with n inputs and single output.
Assume the existence of a sub-exponentially secure Indistinguishability Obfuscator iO, a Double
Key Deniable encryption scheme DDKL = (SetupDDK,EncDDK,DecDDK,DenEncDDK,ExplainDDK)
and an adaptively secure Commitment scheme COM = (Setupbind

Com, Setupequiv
Com ,Com,Extr,Equiv).

Then the protocol Π presented in Figure 1 UC-securely realizes the ideal functionality Ff in
the FCRS-hybrid model with computational security against any adaptive, active adversary
corrupting an arbitrary number of parties in two rounds of broadcast.

Corollary 6.2. Assume the existence of a sub-exponentially secure indistinguishability ob-
fuscation and doubly enhanced trapdoor permutation then any ideal functionality Ff can be
UC-securely realized in the FCRS- model against any adaptive, active adversary corrupting an
arbitrary number of parties. Furthermore this protocol involves only two rounds of broadcast.

We start by noting that the protocol is correct. Observe that if all the parties behave honestly
then the protocol ends us executing the circuit f on the inputs of all parties, leading to the correct
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Protocol Π

Protocol Π uses an Indistinguishability Obfuscator iO, a Double Key Deniable encryption
scheme DDKL = (SetupDDK,EncDDK,DecDDK,DenEncDDK,ExplainDDK) based on the scheme
(Setup,Enc,Dec) with perfect correctness, where the relation L is defined below, and an adap-
tively secure Commitment scheme COM = (Setupbind

Com,Com).a Let f : ({0, 1}`in)n → {0, 1}`out
be the circuit parties want to evaluate on their private inputs.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
CRS: Output (pk, CK, oP ) as the common reference string generated as follows:

• Generate (pk, sk) ← SetupDDK(1λ, 1`in+`out) where pk = (σ, pk0, pk1, DK) and sk =
(sk0, sk1)

• Generate (CK,µ)← Setupbind
Com(1λ).

• Let oP = iOProgsk0,pk,CK,f be the obfuscation of the program Progsk0,pk,CK,f , described in
Figure 2.

Round 1: Each party Pi generates βi = Com(CK, xi;ωi) and broadcasts it to all parties.
Round 2: Each party Pi generates (ci, c′i, πi) =

DenEncDDK(pk, xi||φ`out , xi||φ`out , (i, {βj}j∈[n]), (0n·`in , 0`out , {tj}j∈[n]); ri) where φ is a
special fixed symbol and ti = ωi and tj = 0∗ for all j ∈ [n] such that j 6= i. It then broadcasts
(ci, c′i, πi) to all parties.
Output phase: Each party Pi outputs oP ({βj}j∈[n], {cj , c′j , πj}j∈[n]).

Language L for the Double Key deniable encryption scheme DDKL: Recall LCom as
the language defined in Section 6.1.3.5, and let RCom be the associated relation. We have that
(c, c′, (i, {βj}j∈[n])) ∈ L if (c, c′, (i, {βj}j∈[n])) ∈ L1 ∨ L2 defined as follows:b

L1 =

(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣
∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) such that
c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)
∧ m0 = m1 = xi||φ`out

∧ RCom((βi, xi), ti)

 (6.1)

L2 =

(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣
∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) such that
c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)
∧ m0 = xi||φ`out ∧m1 = φ`in ||out
∧ ∀j ∈ [n],RCom((βj , xj), tj) ∧ out = f({xj}j∈[n])

 (6.2)

aWe note that COM provides more procedures but we note that they only affect the proof. Hence for
simplicity of exposition we skip mentioning them here.

bChanges in L2 from L1 are highlighted in red.

Figure 6.1: [GP15] Protocol Π.
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Program Progskb,pk,CK,f

Input: ({βj}j∈[n], {cj , c′j , πj}j∈[n]).
Description:

1. If there exists j ∈ [n] such that DecDDK((cj , c′j , πj)) =⊥ then output ⊥.
2. Parse cj as dj,0||ej,0 where dj,0 is the encryption of the first `in bits and ej,0 is the

encryption of the rest of the bits. Similarly parse c′j as dj,1||ej,1.
If ∃j ∈ [n] such that Dec(skb, ej,b) 6= φ`out , then let i be the first such j. If this is the
case then output Dec(skb, ei,b).

3. Otherwise for each j ∈ [n], let xj = Dec(skb, dj,b) and output f({xj}j∈[n]).

Figure 6.2: [GP15] Program Progskb,pk,CK,f .

output. Security is proved via a simulator provided in Section 6.1.5 and indistinguishability is
argued in Section 6.1.6.

6.1.4.1 Extensions

Now we give some natural extensions of our protocol and remove assumptions that were made
to simplify exposition.

General Functionality. Our basic MPC protocol as described in Figure 1, only considers
deterministic functionalities where all the parties receive the same output. We would like to
generalize it to handle randomized functionalities and individual outputs (just as in [AJW11]).
First, the standard transformation from a randomized functionality to a deterministic one (See
[Gol04, Section 7.3]) works for this case as well. In this transformation, instead of comput-
ing some randomized function g(x1, . . . xn; r), the parties compute the deterministic function
f((r1, x1), . . . , (rn, xn)) def= g(x1, . . . , xn; +n

i=1ri). We note that this computation does not add
any additional rounds. We note that since we are in the setting of adaptive security we can only
realize adaptively well-formed [CLOS02] functionalities, which reveals its randomness if all the
parties are corrupted.

Next, we move to individual outputs. Again, we use a standard transformation (See [LP09b],
for example). Given a function g(x1, . . . , xn)→ (y1, . . . , yn), the parties can evaluate the follow-
ing function which has a single output:

f((k1, x1), . . . , (kn;xn)) = (g1(x1, . . . , xn) + k1|| . . . ||gn(x1, . . . , xn) + kn)

where gi indicates the ith output of g, and ki is randomly chosen by the ith party. Then, the
parties can evaluate f , which is a single output functionality, instead of g. Subsequently every
party Pi uses its secret input ki to recover its own output. The only difference is that f has one
additional exclusive-or gate for every circuit-output wire. Again, this transformation does not
add any additional rounds of interaction.
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Making CRS independent of the circuit being computed. Note that in our construction
the obfuscation oP that is given as part of the CRS depends on the circuit f parties are trying
to compute on their joint inputs. We can remove this dependence by using a universal circuit.
Then the parties can feed in the universal circuit the actual circuit that they want along with
their private inputs. However, the CRS will still depend on the size of the circuit. We can avoid
this by setting a priori bound on the size of the circuit being computed. Once we have an iO
candidate for Turing machines the above can be avoided yielding a CRS independent of the size
of the circuit.

6.1.5 Description of our Simulator

Let A be an active, adaptive adversary that interacts with parties running the protocol Π from
Figure 1 in the FCRS-hybrid model. We construct a simulator S (the ideal world adversary)
with access to the ideal functionality Ff , which simulates a real execution of Π with A such
that no environment Z can distinguish the ideal world experiment with S and Ff from a real
execution of Π with A.

Recall that S interacts with the ideal functionality Ff and with the environment Z. The
ideal adversary S starts by invoking a copy of A and running a simulated interaction of A with
the environment Z and the parties running the protocol. Our simulator S proceeds as follows:

Simulated CRS: The common reference string is chosen by S in the following manner (recall
that S chooses the CRS for the simulated A as we are in the FCRS-hybrid model):

1. S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the Double Key deniable encryp-
tion scheme, but replaces its internal call to the algorithm K with S = (S1, S2) of the
NIZK proof system. More specifically, S generates (pk0, sk0), (pk1, sk1) ← Setup(1λ),
(σ, τ) ← S1(1λ), along with the public denying key DK. It sets the public key
pk = (pk0, pk1, σ,DK).

2. S runs the algorithm Setupequiv
Com (1λ) of the adaptively secure commitment scheme COM

and obtains (CK,µ, ν).

3. S computes oP = iOProgsk1,pk,CK,f where the latter is the obfuscation of the program Prog,
as described in Figure 2, parameterized with the key sk1.

S sets the common reference string equal to (pk, CK, oP ) and locally stores (sk, τ, µ, ν).
Looking ahead, the trapdoor µ will be used to extract the inputs of the corrupted parties

and ν to equivocate on the commitment S provides on behalf of honest parties. The trapdoor
τ for the simulated σ will be used to generate simulated proofs.

Simulating the communication with Z: Every input value that S receives from Z is
written on A’s input tape. Similarly, every output value written by A on its own output tape
is directly copied to the output tape of S.
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Simulating actual protocol messages in Π: Note that there might be multiple sessions
executing concurrently. Let sid be the session identifier for one specific session. We will specify
the simulation strategy corresponding to this specific session. The simulator strategy for all
other sessions will be the same. Let P = {P1, . . . , Pn} be the set of parties participating in
the execution of Π corresponding to the session identified by the session identifier sid. Also let
PA ⊆ P be the set of parties corrupted by the adversary A at any time. Recall that we are
in the setting of adaptive corruption so more parties could be added to this set as the protocol
proceeds. At any point S only generates messages on behalf of parties P\PA. In the following,
if at the end of some round all parties are corrupted then S does not need to go to do anything
else.

Round 1 Messages S → A: In the first round S must generate messages on behalf of the
honest parties, i.e. parties in the set P\PA. For each party Pi ∈ P\PA our simulator proceeds
as:

1. Generate a fake commitment (βi, statei)← Equiv1(CK, ν).

It then sends βi to A on behalf of party Pi and it internally saves statei.

Round 1 Messages A → S: Also in the first round the adversary A generates the messages
on behalf of corrupted parties in PA. For each party Pi ∈ PA our simulator proceeds as follows:

1. Extracting inputs of corrupted parties: Let βi be the commitment that A sends on behalf
of Pi. Our simulator S runs the extraction algorithm Extr(CK,µ, βi) in order to obtain
xi.

Note that it is possible that A sends a commitment βi on behalf of Pi such that it is not
well-formed, or in other words extraction using the function Extr fails. In this case S sets
xi = ⊥ and proceeds to the next step. (Looking ahead, we note that in this case the
adversary will not be able to generate a valid second round message.)

2. Next S sends (input, sid,P, Pi, xi) to Ff on behalf of the corrupted party Pi.

Simulating corruption of parties in Round 1: When A corrupts a real world party Pi,
then S first corrupts the corresponding ideal world party Pi and obtains its input xi. Next S
prepares the internal state on behalf of Pi such that it will be consistent with the commitment
value βi that it had provided to A earlier. Specifically S computes Equiv2(CK, ν, βi, statei, xi) in
order to obtain randomness ωi such that βi = Com(CK, βi;ωi). S provides ωi as the randomness
of party Pi to A. Note that S can do this at any point during 1st round.

Completion of Round 1: After S has submitted the inputs of all the corrupted parties to
Ff then it responds by sending back the message (output, sid,P, out) where out = f({xj}j∈[n]).
Note that in case S had failed to extract an input for some player Pi then it would have sent ⊥
to Ff and would have received ⊥ as the output from the ideal functionality.
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Round 2 Messages S → A: In the second round S generates messages on behalf of the
honest parties, i.e. parties in the set P\PA as follows:

1. For each party Pi ∈ P\PA, S generates ci = Enc(pk0, φ
`in ||out), c′i = Enc(pk1, φ

`in ||out)
and generates πi as a simulated proof for the statement (ci, c′i, (i, {βj}j∈[n])). More specif-
ically it generates πi ← S2(σ, τ, (ci, c′i, (i, {βj}j∈[n]))).

S sends (ci, c′i, πi) to A on behalf of Pi.

Round 2 Messages A → S: In the second round the adversary A generates the messages on
behalf of corrupted parties in PA. For each party Pi ∈ PA our simulator proceeds as:

1. Let (ci, c′i, πi) be the message that A sends on behalf of party Pi. S checks to see if
V (σ, (ci, c′i, (i, {βj}j∈[n])), πi) = 1 for each Pi ∈ PA.

If all the proofs verify then S sends the message (generateOutput, sid,P) to the ideal functionality
Ff .

Simulating corruption of parties during/at the end of Round 2: When A corrupts
a party Pi in the real word, then S corrupts the corresponding party Pi in the ideal world
and obtains its input xi. Next S prepares the internal state on behalf of Pi such that it
will be consistent with messages it had sent on behalf of Pi. As explained before, S gen-
erates randomness ωi that explains the commitment βi to the value xi running the algo-
rithm ωi = Equiv2(CK, ν, βi, statei, xi). Next S needs to explain the second round mes-
sage (ci, c′i, πi). S has to explain the message (ci, c′i, πi) by computing the randomness as
ψi = ExplainDDK(pk, (ci, c′i, πi), (xi||φ`out , xi||φ`out , (i, {βj}j∈[n]),
(0n·`in , 0`out , {tj}j∈[n])) where ti = ωi and tj = 0∗ for all j ∈ [n] such that j 6= i. S provides
ωi||ψi as the randomness of party Pi to A. Note that S can do this at any point during or after
the round 2 of the protocol.

This completes the description of the simulator.

6.1.6 Proof of Security

In this section, via a sequence of hybrids, we will prove that no environment Z can distinguish
the ideal world experiment with S and Ff (as defined in the Appendix) from a real execution
of Π with Adv. We will start with the real world execution in which the adversary Adv interacts
directly with the honest parties holding their inputs and step-by-step make changes till we
finally reach the simulator as described in Section 6.1.5. At each step we will argue that the
environment cannot distinguish the change except with negligible probability.

We prove security in a model where the inputs are selective in the sense that the environment
determines the inputs to the computation before it sees the CRS. The proof for the setting where
the environment chooses the inputs adaptively only follows using sub-exponential security of the
indistingushabiity obfuscator. We have sub-exponential loss in the security since we use the
universal deniable encryption transformation of [SW14] which supports one bit messages at
a time. Our construction needs to support multi-bit messages. However, we remark that the
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[SW14] deniable encryption scheme immediately implies a deniable encryption scheme for multi-
bit messages of any polynomial length k bits by creating a ciphertext for k bit message as a
sequence of k single bit encryptions. Our construction cannot support the above bit-by-bit
encryption since every single encryption apart from the messages which can be bits it also takes
as input the witness for the NIZK proof which length depends on all the commitment messages
of the first round.

Hybrid H0: This hybrid corresponds to the Z interacting with the real world adversary Adv
and honest parties that hold their private inputs.

We can restate the above experiment with the simulator as follows. We replace the real world
adversary Adv with the ideal world adversary S. The ideal adversary S starts by invoking a
copy of Adv and running a simulated interaction of Adv with the environment Z and the honest
parties. S forwards the messages that Adv generates for it environment directly to Z and vice
versa (as explained in the description of the simulator S). In this hybrid the simulator S holds
the private inputs of the honest parties and generates messages on their behalf using the honest
party strategies as specified by Π.

Hybrid H1: In this hybrid, we change how the internal randomness of the corrupted party is
explained to A on being adaptively corrupted. Specifically we change the randomness that
is used to explain the ciphertext S generates on behalf of parties in round 2 of protocol Π.
Recall that in the second round S on behalf of an honest party Pi generates the
second message as (ci, c′i, πi) = DenEncDDK(pk, xi||φ`out , xi||φ`out , (i, {βj}j∈[n]), (0n·`in ,
0`out , {tj}j∈[n]); ri) where ti is the randomness used in generating commitment βi
and tj = 0∗ for all j ∈ [n] such that j 6= i. So if A corrupts Pi then the
randomness ri would be reveal to A. In Hybrid 1, instead we provide ψi =
ExplainDDK(pk, (ci, c′i, πi), (xi||φ`out , xi||φ`out , (i, {βj}j∈[n]),

(0n·`in , 0`out , {tj}j∈[n])) where tj values are as before.

Lemma 6.3. Hybrid0 ≈c Hybrid1.

Proof. The indistinguishability of Hybrid1 from Hybrid0 follows from the indistinguisha-
bility of explanation property of the Double Key deniable encryption scheme.

Hybrid H2: In this hybrid we change the way S generates the message (ci, c′i, π) on behalf of
the honest parties.
Recall that in the second round in Hybrid 1, S on behalf of an honest party Pi generates
the second message as (ci, c′i, πi) = DenEncDDK(pk, xi||φ`out , xi||φ`out , (i, {βj}j∈[n]), (0n·`in ,
0`out , {tj}j∈[n]); ri) where ti is the randomness used in generating commitment βi and
tj = 0∗ for all j ∈ [n] such that j 6= i. We will change this by generating the ciphertexts
directly using procedures Enc and the prover P .
Specifically, ci = Enc(pk0, xi||φ`out ; si0) and c′i = Enc(pk1, xi||φ`out ; si1) and out-
puts (ci, c′i, πi), where πi ← P (σ, (ci, c′i, {i, {β}j∈[n]}), (xi||φ`out , xi||φ`out , si0, si1, (0n·`in ,
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0`out , {tj}j∈[n]))) where ti is the randomness used in generating commitment βi and tj = 0∗
for all j ∈ [n] such that j 6= i.

Lemma 6.4. Hybrid1 ≈c Hybrid2.

Proof. The indistinguishability of Hybrid2 from Hybrid1 follows immediately from the
indistinguishability of source of ciphertext property of the Double Key deniable encryption
scheme.

Hybrid H3: In this hybrid, we change how σ, which is a part of pk, and the proofs πi for every
Pi ∈ P\PA are generated.
More specifically, S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the Double Key
deniable encryption scheme, but replaces its internal call to the algorithm K with S =
(S1, S2) of the NIZK proof system. More specifically, S generates (pk0, sk0), (pk1, sk1) ←
Setup(1λ), (σ, τ)← S1(1λ), along with the public denying key DK. It sets the public key
pk = (σ, pk0, pk1, DK).
We also generate fake proofs πi using trapdoor τ . Specifically we generate πi ←
S2(σ, τ, (ci, c′i, (i, {βj}j∈[n]))).

Lemma 6.5. Hybrid2 ≈c Hybrid3.

Proof. The indistinguishability of Hybrid3 from Hybrid2 follows immediately from the
computational zero-knowledge property of the NIZK proof system.

Hybrid H4: We don’t change anything in the output of the hybrid itself. We just use knowledge
of µ to extract the inputs A commits to in the 1st round messages that it sends on behalf
of the corrupted parties.
More specifically, S for every Pi ∈ PA obtains xi = Extr(CK,µ, βi). If extraction fails
then it sets xi = ⊥.

Hybrid H5: In this hybrid, we change how the simulator S generates c′i in the second round
message (ci, c′i, πi) on behalf of honest parties Pi ∈ P\PA. In particular, S instead of
computing the ciphertext c′i = Enc(pk1, xi||φ`out ; si1), generates c′i = Enc(pk1, φ

`in ||out; si1),
where out is the output computed as f({xj}j∈[n]) using the inputs xi of the honest parties,
that the simulator has access to, and extracted inputs of the malicious parties.

Lemma 6.6. Hybrid4 ≈c Hybrid5.

Proof. We base the indistinguishability between hybrids Hybrid4 and Hybrid5 on the se-
mantic security of the encryption scheme (Setup,Enc,Dec).
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Hybrid H6: In this hybrid we essentially reverse the change that was made in going from
Hybrid 2 to Hybrid 3. In particular we change the σ so that it is sampled from the honest
distribution and generate the proof honestly. Note that since now we have changed the
ciphertext c′i the proof will have to be generated with respect to language L2.

More specifically, S uses K to generate σ instead of S1. Also for every Pi ∈ P\PA, S gen-
erates πi ← P (σ, (ci, c′i, (i, {βj}j∈[n])), (xi||φ`out , φ`in ||out, si0, si1, ({xi}i∈[n], out, {tj}j∈[n])))
where tj is the witness that βj ∈ LCom .

Lemma 6.7. Hybrid5 ≈c Hybrid6.

Proof. The indistinguishability of Hybrid5 from Hybrid6 follows immediately from the
computational zero-knowledge property of the NIZK proof system.

Hybrid H7: In this hybrid we change how oP , the obfuscated program in the CRS is gen-
erated. More specifically, oP is generated as an obfuscation of Progsk1,pk,CK,f instead of
Progsk0,pk,CK,f .

In the following we show that the program Prog is equivalent under sk0 and sk1 with
overwhelming probability. This allows us to conclude that the Hybrid 6 and Hybrid 7 are
indistinguishable based on indistinguishability obfuscation.

Lemma 6.8. Progsk0,pk,CK,f ≡ Progsk1,pk,CK,f .

Proof. Recall that the underlying language L of the Double Key deniable encryption
scheme consists of two languages, namely L1 and L2. Note that since the NIZK has
statistical soundness with overwhelming probability over the choices of σ we have that
all ciphertexts with an accepting proof must be from one of the two languages. We refer
to the two types of ciphertexts corresponding to the language L1 and L2, as Type-1 and
Type-2 ciphertext, respectively.

Recall that the program Prog takes {βj}j∈[n] and {cj , c′j , πj}i∈[n] as input. Recall from
Figure 2 that in Step 1, Prog checks to see that all the proofs πi are accepting and otherwise
it outputs ⊥. This means that for the program to do anything interesting all the proofs
must be valid. Next we will show that in such cases the output of the program is identical
regardless of whether sk0 or sk1 is used.

All ciphertexts are of Type-1: In this case, cj and c′j for j ∈ [n] encrypted under pk0
and pk1 respectively, encrypt the same value. Hence, regardless of whether sk0 is used or
sk1 is used the program outputs the exact same value f({xj}j∈[n]).
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There is at least one Type-2 ciphertext: Note that, in case sk0 is used then we have
that Step 2 of Prog is never invoked. On the other hand in case sk1 is used then we have
that Step 2 of Prog is necessarily invoked.
In other words if sk0 is used then the xj values are decrypted and output is calculated.
On the other hand if sk1 is used then a hard-coded out value is generated. We will argue
that in both cases the output generated by Prog is identical. We argue this by showing
that the only acceptable value for the hard-coded value out is f({xj}j∈[n]), where xj are
the inputs parties commit to in the first round. Recall that the commitment scheme is
perfectly binding, meaning that for every commitment βi there is exactly one xi such that
(βi, xi) ∈ LCOM. This proves our claim.

Hybrid H8: In this hybrid we do the same change that was made in going from Hybrid 2 to
Hybrid 3. In this hybrid, we change how σ, which is a part of pk, and the proofs πi for
every Pi ∈ P\PA are generated.
More specifically, S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the Double Key
deniable encryption scheme, but replaces its internal call to the algorithm K with S =
(S1, S2) of the NIZK proof system. More specifically, S generates (pk0, sk0), (pk1, sk1) ←
Setup(1λ), (σ, τ)← S1(1λ), along with the public denying key DK. It sets the public key
pk = (σ, pk0, pk1, DK).
We also generate fake proofs πi using trapdoor τ . Specifically, it generates πi ←
S2(σ, τ, (ci, c′i, (i, {βj}j∈[n]))).

Lemma 6.9. Hybrid7 ≈c Hybrid8.

Proof. The indistinguishability of Hybrid7 from Hybrid8 follows immediately from the
computational zero-knowledge of the NIZK proof system.

Hybrid H9: In this hybrid, we change how the simulator S generates cj in the second round
message (cj , c′j , πj) on behalf of honest parties Pj ∈ P\PA. More specifically, S instead
of computing cj = Enc(pk0, xi||φ`out), it computes cj = Enc(pk0, φ

`in ||out) where out =
f({xj}j∈[n]).

Lemma 6.10. Hybrid8 ≈c Hybrid9.

Proof. We base the indistinguishability between hybrids Hybrid8 and Hybrid9 on the se-
mantic security of the encryption scheme, (Setup,Enc,Dec).

Hybrid H10: In this hybrid we change the way the public parameters of the commitment
scheme COM are generated. In particular, S runs the setup algorithm Setupequiv

Com (1λ)
(instead of Setupbind

Com(1λ)) of the adaptively secure commitment scheme COM and obtains
(CK,µ, ν) where the trapdoor µ is still being used for extraction of adversary’s inputs.
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Lemma 6.11. Hybrid9 ≈c Hybrid10.

Proof. Indistinguishability between hybrids Hybrid9 and Hybrid10 follows from the indis-
tinguishability of the public parameters of the commitment scheme COM.

Hybrid H11: In this hybrid we change the way S generates the commitments on behalf of
the honest parties. In particular we will remove the inputs and make these commitments
equivocal. More specifically, for every party Pi ∈ P\PA the first round message is com-
puted by S running (βi, statei)← Equiv1(CK, ν). If the party later gets corrupted then S
will produce randomness ωi to equivocate the commitment βi to the prescribed input xi.
To this end, S will run ωi = Equiv2(CK, ν, βi, statei, xi).

Lemma 6.12. Hybrid10 ≈c Hybrid11.

Proof. We base the indistinguishability between hybrids Hybrid10 and Hybrid11 on the
polynomial equivocality of the adaptively secure commitment scheme COM.

Note that Hybrid11 is identical to the simulation strategy described in Section 6.1.5. This
concludes the proof.
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6.2 Constant-Round MPC for all-but-one Adaptive
Corruptions

Overview. The problem of constructing adaptively secure constant-round MPC protocols
against arbitrary corruptions is considered a notorious hard problem. A recent line of works
based on indistinguishability obfuscation [GP15] (see Section 6.1) constructs such protocols
with optimal number of rounds against arbitrary corruptions. However, based on standard
assumptions, adaptively secure protocols secure against even just all-but-one corruptions with
near-optimal number of rounds are not known. In this work we provide a three-round solution
based only on LWE and NIZK secure against all-but-one corruptions. Asharov et al. [AJL+12]
and more recently Mukherjee and Wichs [MW16] presented two-round protocols based on LWE
which are secure only in the presence of static adversaries.

Our protocols are constructed based on a special type of cryptosystem we call equivocal
FHE from LWE which is the focus of this section. In the full version of [DPR16] we provide our
full protocols and also build adaptively secure UC commitments and UC zero-knowledge proofs
(of knowledge) from LWE. Moreover, in the decryption phase using an AMD code mechanism
we avoid the use of ZK and achieve communication complexity that does not scale with the
decryption circuit.

6.2.1 Techniques

To construct our adaptively secure protocol, we start from the well known blue-print for FHE-
based MPC: players encrypt their inputs under a common public key, evaluate the desired
function locally and then jointly decrypt the result. This is possible under an appropriate
set-up assumption, which is always needed for UC security and dishonest majority. Namely,
we assume that a public key has been distributed, and players have been given shares of the
corresponding secret key.

This approach has been used before and usually leads to static security. One reason for this
is that encryptions are usually committing, so we are in trouble if the sender of a ciphertext
is corrupted later. This can be solved using a cryptosystem with equivocal properties and
this would mean that the input and the evaluation phase of the protocol can be simulated,
even for adaptive corruptions. Players need, of course, to prove that they know the inputs
they contribute, but this can be done once we construct constant round adaptively secure UC
commitment and ZK proofs from LWE.

An important tool we would like to get in order to achieve constant-round adaptively se-
cure MPC protocols may be a Fully Homomorphic Encryption (FHE) scheme with equivocal
properties.

Starting point – Fully Homomorphic NCE. It is tempting to consider a generic solu-
tion from FHE and Non-Commiting Encryption (NCE). In particular, in such a hypothetical
construction, the secret key would be a secret key for an FHE scheme, the public key an FHE
encryption of the NCE secret key and the NCE public key. Encryption would be performed
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using the NCE, and homomorphic evaluation and decryption would be performed as expected.
However, there are fundamental caveats with this approach.

It does not seem to buy us any efficiency at all. In particular, NCE schemes are interactive,
in that the receiver must send fresh (public-)key material for each new message to be encrypted.
There is even a result by Nielsen saying that this is inherent for NCE [Nie02]. It will be hard
for an interactive scheme to fit the above suggestion. Indeed, the public key material would run
out after encrypting some number of inputs. Therefore, in generic NCE the public-key cannot
be reused, and has to be updated for each new message. Moreover, one may go around this
issue by having an NCE public-key for each party where the FHE encryption in the public key
will include all the public keys. However, such a solution is highly inefficient since it is not
the number of parties that matter but the amount of data to be encrypted. The amount of
public-key material has to be proportional to size of the plaintext data. For instance, if only a
constant number of parties had input, but a lot of, we would have a significant problem.

Another suggestion is to always regenerate this setup afresh using a constant round adaptive
protocol prior to each new execution. This might work but unfortunately set-up data are
considered reasonable if its size does not depend on the function to be computed (otherwise we
are in the preprocessing model which is a completely different ball game). Hence, one would in
fact always need this key regeneration step per execution.

It turns out that the motivation of considering NCE in this context is very weak.

Our approach − Starting afresh. Towards minimising the above caveat we propose a
scheme we call Equivocal FHE. An equivocal FHE scheme is a fully homomorphic encryption
scheme with additional properties. Most importantly, it is possible to generate “fake” public
keys that look like normal keys but where encryption leads to ciphertexts that contain no
information on the plaintext. This is similar to the known notion of meaningful/meaningless
keys, but in addition we want that fake public keys come with a trapdoor that allows to “explain”
(equivocate) a ciphertext as an encryption of any desired plaintext. This is similar to (but not
the same as) what is required for NCE: for NCE one needs to equivocate a ciphertext even if
the decryption key is also given (say, by corrupting the receiver), here we only need to give the
adversary valid looking randomness for the encryption. In order to achieve such a cryptosystem
the main properties we require from an FHE scheme is formula privacy, invertible sampling
and homomorphishm over the randomness. Given this, we managed to obtain the required
equivocation directly with much less overhead compared to a possible NCE solution.

We give a concrete instantiation of equivocal FHE based on LWE, starting from the FHE
scheme by Brakerski et al. [BV11b].

Achieving a simulatable protocol. A harder problem is how to simulate the output phase
in which ciphertexts containing the outputs are decrypted. In the simulation we cannot expect
that these ciphertexts are correctly formed and hold the actual outputs, so the simulator needs
to “cheat”. However, each player holds a share of the secret key which we have to give to the
adversary if he is corrupted. If this happens after some executions of the decryption protocol,
we (the simulator) may already be committed to this share. It is therefore not clear how the
simulator can achieve the desired decryption results by adjusting the shares of the secret key.
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To get around this, we adapt an idea from Damgård and Nielsen [DN03], who proposed an
adaptively secure protocol based on additively homomorphic threshold encryption but in the
honest majority scenario. The idea is to add a step to the protocol where each ciphertext is
re-randomised just before decryption. This gives the simulator a chance to cheat and turn the
ciphertext into one that contains the correct result, and one can therefore simulate the decryption
without having to modify the shares of the secret key. The re-randomisation from [DN03] only
works for honest majority, we show a different method that works for dishonest majority and
augment our Equivocal FHE scheme with the ciphertext randomisation property to achieve our
goal.

General purpose Equivocal FHE. We mention for completeness that there is also a more
generic approach which will give us adaptive security based only on our Equivocal FHE: namely,
we follow the same blueprint as before, with input, evaluation and output phases. However, we
implement the verification of ciphertexts in the input phase and the decryptions in the output
phase using generic adaptively secure MPC a la [CLOS02, IPS08]. This way, the communication
and the number of rounds do not depend on the size of circuit to be computed securely. However,
it would not be genuinely constant round, and the communication complexity would depend on
the circuits computing the encryption and decryption functions of the underlying cryptosystem.
Hence, unlike our protocol, any such solution would have communication complexity propor-
tional to the Boolean circuit complexity of the decryption function (which seems inherent since
one needs Yao garbling underneath). We measure the round and communication complexity of
such a possible solution based on the IPS compiler. The bottom line is that using IPS generi-
cally would yield a larger (constant) number of rounds (20-30 rounds) and worse dependence on
the security parameter. A concise estimate can be found in the full version. Clearly the above
estimate should be taken with large grains of salt. We have tried to be optimistic on the part
of IPS, to not give our concrete protocol an unfair advantage. Thus, actual numbers could be
larger. On the other hand, we propose a three-round solution.

AMD code solution to replace ZK. However, contrary to the above generic IPS solution,
our approach allows for significant optimization of the decryption as follows. Instead of using ZK
proofs to prove that the player’s evaluation shares to the decryption phase are correct, we change
the evaluation phase of the protocol. In particular, instead of having ciphertexts containing the
desired output z, the evaluation phase computes encryptions containing a codeword c = (z, α)
in an algebraic manipulation detection code, where z is the data and α is the key/randomness.
In the decryption stage, players commit to their decryption shares (recall that we have UC
commitment available), and then all shares are opened. If decryption fails, or decoding the
codeword fails, we abort, else we output the decoded z. If z and α are thought of as elements
in a (large) finite field, then the codeword can just be (z, α, αz). According to our optimization,
the communication complexity of our protocol is not only independent of the the size of the
evaluated circuit but also independent of the circuit size of the decryption circuit.

UC adaptive commitments and ZKPoK from LWE. A tool we need for our MPC proto-
col is constant-round UC-secure commitments and zero-knowledge proofs. For the commitments
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we start from a basic construction appeared in [CLOS02], which was originally based on claw-
free trapdoor permutations (CFTP). We show that it can be instantiated based on LWE (which
is not known to imply CFTP).

Commitment schemes that satisfy both equivocality and extractability form useful tools
in achieving adaptive security. We show how to use an equivocal scheme based on the LWE
assumption to build equivocal and extractable commitments. Note that such commitments
based on LWE can be of independent interest. We remark that any encryption scheme that
satisfies the properties specified in Definition 6.6 suffice for our purposes – the multiplicative
homomorphic property of our QFHE scheme will not be of use here; however, since we are using
our commitment scheme as a tool in our adaptive MPC protocol based on LWE, we use the
same QFHE scheme in our commitment scheme too.

Since we are interested in UC security against adaptive adversaries, our commitment scheme
is in the CRS model. The scheme must satisfy the following two properties, polynomial equiv-
ocality and simulation extractability. The former guarantees that the simulator S needs to be
able to produce polynomially many equivocal commitments using the same CRS. More specif-
ically, S can open the equivocal commitments to any value of its choice and give consistent
randomness to adversary A. The latter property says that the simulator S needs to be able to
extract the contents of any valid commitment generated by adversary A, even after A obtains
polynomially many equivocal commitments generated by S. Note that there is only an apparent
conflict between equivocality and the binding property and between the extractability and the
hiding property, as the simulator is endowed with additional power (trapdoors) in comparison
with the parties in the real world execution. In the following we overview our technique on how
our commitment scheme satisfies the above properties.

Equivocation in our scheme is achieved via QFHE. In particular, the commitment algorithm
is simply the encryption algorithm of a QFHE scheme. In order to add extractability we must
enhance our scheme in such a way that we do not sacrifice equivocality. A failed attempt is to
include a public key for an encryption scheme secure against CCA2 attacks in the CRS. In this
case, the committer will send an encryption of the decommitment information along with the
commitment itself. Then, as the simulator has the associated decryption key, it can decrypt
the decommitment information and hence extract the committed value from any adversarially
prepared commitment. However, notice that such an encryption is binding even to the simulator,
so equivocality cannot be achieved.

The solution to the problem is to send the commitment along with two pseudorandom ci-
phertexts. One ciphertext is an encryption of the decommitment information and the other
ciphertext is a uniformly random string. In this way, the simulator can encrypt both decom-
mitment values and later show that it only knows the decryption to one and that the other was
uniformly chosen.

For the security of our construction, the encryption scheme used to encrypt the decom-
mitment information has to be a CCA2-secure encryption scheme with the property that any
produced ciphertext is pseudorandom and has deterministic decryption. To this end, the CCA2
encryption scheme of Micciancio and Peikert [MP12] based on LWE satisfies the above proper-
ties. They obtain their result via relatively generic assumptions using either strongly unforgeable
one-time signatures [DDN91a], or a message authentication code and a weak form of commit-
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ment [BCHK07]. The first assumption does not yield pseudorandom ciphertexts, thus another
encryption producing pseudorandom ciphertexts on top of the scheme of [MP12] could have been
used, resulting in a double encryption scheme. However, it turns out that their construction
with the latter set of assumptions has pseudorandom ciphertexts.

The reader might have observed that this bears some resemblance with the trick used in
the seminal work of [CLOS02], to achieve extractability. Their scheme is based on enhanced
trapdoor permutations, also needed in order to get double encryption CCA2 security. Moreover,
in order to build equivocal commitments they need an NP reduction to graph Hamiltonicity
since the CRS of their commitment scheme consists of a graph G sampled from a distribution
such that it is computationally hard to tell if G has a Hamiltonian cycle. Interestingly, the
CLOS commitment scheme does not give an instantiation based on LWE and to begin with,
there are no known trapdoor permutations based on LWE. On the other hand, assuming the
hardness of LWE, we propose an extractable and equivocal commitment with no need of an NP
reduction, leading to a huge improvement in efficiency.

Our UC commitment scheme serves towards the realization of a commit-and-prove func-
tionality based on LWE. Such a functionality is generic and hence is quite useful – it allows
a party to prove NP statements relative to its commitment value in the setting where parties
commit to their inputs but they never decommit. Using the power of the UC commitment
scheme, commit-and-prove follows quite easily from known techniques.

In section 6.2.2 we define our Equivocal fully homomorphic encryption QFHE scheme and its
properties. A concrete example of equivocal FHE based on the scheme of [BV11b] is given in
the full version. However, any FHE scheme that satisfies the properties in Definition 6.6 can be
equivocal.

Notation. We write � and � to denote operations over encrypted data including multipli-
cation of a ciphertext with a non encrypted string. For a randomized algorithm A, we use
a← A(x; r) to denote running A on input x and uniformly random bits r ∈ {0, 1}∗, producing
output a.

Invertible Sampling [OPW11]: We recall the notion of invertible sampling, which is closely
connected to adaptive security in simulation models where erasures are not allowed. We say
that an algorithm A with input space X has invertible sampling if there exists a PPT inverting
algorithm, denoted by InvA, such that for all input x ∈ X, the outputs of the following two
experiments are either computationally, or statistically indistinguishable:

y ← A(x, r) y ← A(x, r)
r′ ← InvA(y, x)

Return (x, y, r) Return (x, y, r′)

6.2.2 Equivocal Fully Homomorphic Encryption Scheme

We start by recalling the notions of (fully) homomorphic encryption. Next we define the new
notion of Equivocal FHE and we specify the properties needed for such an instantiation. We
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give a concrete instantiation of our Equicocal FHE scheme from the LWE assumption, based on
Brakerski and Vaikutanathan [BV11b] FHE scheme, in the full version.

6.2.2.1 Homomorphic Encryption

A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec) is a quadruple of PPT algo-
rithms. In this work, the message space M of the encryption schemes will be some (modulo
2) ring, and the functions to be evaluated will be represented as arithmetic circuits over this
ring, composed of addition and multiplication gates. The syntax of these algorithms is given as
follows.

• Key-Generation. The algorithm KeyGen, on input the security parameter 1λ, outputs
(pk, sk) ← KeyGen(1λ), where pk is a public encryption key and sk is a secret decryption
key.

• Encryption. The algorithm Enc, on input pk and a message m ∈M , outputs a ciphertext
ct← Encpk(m).

• Decryption. The algorithm Dec on input sk and a ciphertext ct, outputs a message m̃←
Decsk(ct).

• Homomorphic-Evaluation. The algorithm Eval, on input pk, an arithmetic circuit ckt, and
a tuple of ` ciphertexts (ct1, . . . , ct`), outputs a ciphertext ct′ ← Evalpk

(
ckt(ct1, . . . , ct`)

)
.

We note that we can treat the evaluation key as a part of the public key. The security notion
needed in this work is security against chosen plaintext attacks (IND-CPA security), defined as
follows.

Definition 6.3 (IND-CPA security). A scheme HE is IND-CPA secure if for any PPT adversary
Adv it holds that:

AdvCPA
HE [λ] := |Pr[Adv(pk,Encpk(0)) = 1]− Pr[Adv(pk,Encpk(1)) = 1]| = negl(λ),

where, (pk, sk)← KeyGen(1λ).

6.2.2.2 Fully Homomorphic Encryption

A scheme HE is fully homomorphic if it is both compact and homomorphic with respect to a
class of circuits. More formally:

Definition 6.4 (Fully homomorphic encryption). A homomorphic encryption scheme FHE =
(KeyGen,Enc,Eval,Dec) is fully homomorphic if it satisfies the following properties:

1. Homomorphism: Let C = {Cλ}λ∈N be the set of all polynomial sized arithmetic circuits.
(sk, pk) ← KeyGen(1λ), ∀ckt ∈ Cλ, ∀(m1, . . . ,m`) ∈ M ` where ` = `(λ), ∀(ct1, . . . , ct`)
where cti ← Encpk(mi), it holds that:

Pr[Decsk(Evalpk(ckt, ct1, . . . , ct`)) 6= ckt(m1, . . . ,m`)] = negl(λ)
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2. Compactness: There exists a polynomial µ = µ(λ) such that the output length of Eval is
at most µ bits long regardless of the input circuit ckt and the number of its inputs.

6.2.2.3 Equivocal Fully Homomorphic Encryption Scheme

Our Equivocal fully homomorphic encryption scheme consists of a tuple (KeyGen,KeyGen∗,QEnc,
Rand,Eval,Dec,Equiv) of algorithms where the syntax of the procedures
(KeyGen,QEnc,Eval,Dec) is defined as in the above FHE scheme. Our scheme is aug-
mented with two algorithms (KeyGen∗,Equiv) used for equivocation. Jumping ahead, in this
paper we are interested in building adaptively secure n-party protocols generically using
an equivocal QFHE scheme and gain in terms of round and communication efficiency. Two
extra properties needed for the MPC purpose, are distributed decryption and ciphertext
randomisation where the latter one guarantees simulatable decryption 1. If the purpose of our
Equivocal scheme is not MPC then these properties are not required,.In the sequel, we will use
blue color to stress whether a part is relevant to the ciphertext randomisation property.

Definition 6.5 (Equivocal fully homomorphic encryption). An Equivocal fully homomorphic
encryption scheme QFHE = (KeyGen,KeyGen∗,QEnc,Rand,Eval,Dec,Equiv) with message space
M is made up of the following PPT algorithms:

• (KeyGen,QEnc,Eval,Dec) is an FHE scheme with the same syntax as in section 6.2.2.1.

• The Equivocal key generation algorithm KeyGen∗(1λ), outputs an equivocal public-key
secret-key pair (P̃K, S̃K).

• The Equivocation algorithm Equiv(P̃K, S̃K, ct, rct,m), given P̃K, S̃K, a plaintext m, a ci-
phertext ct and random coins rct, outputs a value e in the randomness space.

• The Ciphertext Randomisation algorithm Rand(ct, ct′1, . . . , ct′n), given ciphertexts
ct, ct′1, . . . , ct′n generated by the procedure QEnc outputs a ciphertext CT.
We require the following properties:

1. Indistinguishability of equivocal keys. We say that the scheme has indistinguishability
of equivocal keys if the distributions of PK and P̃K are computationally indistinguish-
able, where (PK, ·)← KeyGen(1λ) and (P̃K, ·)← KeyGen∗(1λ).

2. Indistinguishability of equivocation. Let Drand(1λ) denote the distribution of random-
ness used by QEnc. Let O(P̃K,m) and O′(P̃K, S̃K,m) be the following oracles:

Let O(P̃K,m) : Let O′(P̃K, S̃K,m) :
rct ← Drand(1λ) rct ← Drand(1λ)
ct = QEncP̃K, (m; rct) ct = QEncP̃K(m̃; rct)

e = Equiv(P̃K, S̃K, ct, rct,m)
Output (P̃K, ct, rct) Output (P̃K, ct, e)

1Ciphertext randomisation is needed in order to force the output in the simulation.
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There exists m̃ ∈M such that for any PPT adversary A with oracle access to O(P̃K, ·)
and O′(P̃K, S̃K, ·) the following holds.

∣∣∣∣∣∣Pr

 (P̃K, S̃K)← KeyGen∗(1λ)

1← AO(P̃K,·)

 − Pr

 (P̃K, S̃K)← KeyGen∗(1λ)

1← AO′(P̃K,S̃K,·)

 ∣∣∣∣∣∣ ≤ negl(λ)

3. Ciphertext Randomisation. Let PK be the public key used in the procedure QEnc
for generating ciphertexts ct, ct′1 . . . ct′n from the plaintexts m,m′1, . . . ,m′n ∈ M , re-
spectevely. If Pr[Decsk(ct) = m] = 1 − negl(λ) and for all i ∈ [n], Pr[Decsk(ct′i) =
m′i] = 1− negl(λ) then it holds that

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m] = 1− negl(λ).

On the other hand, let P̃K be the public key used in the procedure QEnc for generating
ciphertexts ct, ct′1 . . . ct′n, respectevely. If Pr[Decsk(ct) = m] = 1− negl(λ) and for all
i ∈ [n], Pr[Decsk(ct′i) = m′i] = 1− negl(λ) then it holds that

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m′1 + . . .+m′n] = 1− negl(λ).

In the sequel for simplicity of exposition, we call the ciphertexts ct′1 . . . ct′n redundant in
case they are generated by QEncPK and non− redundant if they are generated by QEncP̃K.
Analogously, we call the ciphetext ct non− redundant or redundant if it is generated by QEncPK
or QEncP̃K, respectively

2.
In order to construct our equivocal QFHE scheme we use the following special FHE scheme

with some additional properties.

Definition 6.6. [Special fully homomorphic encryption] We call a fully homomorphic encryption
scheme FHE = (KeyGen,Enc,Eval,Dec) a special FHE scheme, if it is IND-CPA secure and
satisfies the following properties: Let Drand(1λ) denote the distribution of randomness used by
Enc.

1. Additive homomorphism over random coins: ∀r1, r2 ∈ Supp(Drand(1λ)) and ∀m ∈ M , it
holds that

(
m� Encpk(0; r1)

)
� Encpk(0; r2) = Encpk(0;m · r1 + r2).

2. E-Hiding: There exists D′rand(1λ) such that ∀m ∈ M , if rblind ← Drand(1λ) and rK ←
D′rand(1λ) then the distribution of (rblind −m · rK) is statistically close to Drand(1λ). 3

3. Invertible Sampling: The distribution Drand(1λ), has invertible sampling via the algorithm
InvDrand .

2By the ciphertext randomisation property, the reader can think of the redundant messages as encryptions
of zeros.

3Intuitively, E-Hiding can be argued in the same way as formula privacy for some FHE schemes. This requires
dwarfing in the sense that rblind should be large enough to dwarf mrK where Drand(1λ) and D′rand(1λ) are
Gaussian distributions. Hence, rK ← D′rand(1λ) and rblind ← Drand(1λ) such that the noise of Drand(1λ) is
super-polynomially larger than the noise of D′rand(1λ).
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Recall that we defined an invertible sampler of an algorithm A in Section 6.2.1 as an algorithm
InvA that takes as inputs the input x and output y with consistent random coins. In our case,
x = 1λ and y is a sample from the range of Drand. Next, in Figure 6.3, we show how to build
an equivocal FHE scheme using a special FHE scheme. The high level intuition is as follows. In
order to achieve equivocality we modify an FHE scheme satisfying the properties of Definition 6.6
as follows: The public key contains an encryption of 1 and an encryption of 0. More specifically,
PK = (pk,K = Encpk(1), R = Encpk(0)) where pk is the public key of an FHE scheme. An
encryption of a message m in the real world is computed using K as (m�K � Encpk(0)) and
encryption for re-randomisation is computed using R as (z�R � Encpk(0)) for a random value
z. In the simulation, the values encrypted in K and R are switched, in particular, K = Encpk(0)
and R = Encpk(1). Therefore, normal encryption leads to encryption of 0 with the guarantee of
equivocation. However, encryption for re-randomisation actually encrypts non-zero values i.e.,
z, in order to force the output.

Theorem 6.13. Let FHE be a special fully homomorphic encryption scheme. Then QFHE =
(KeyGen,KeyGen∗,QEnc,Rand,Eval,Dec,Equiv) in Figure 6.3 is an equivocal QFHE scheme.

Proof. Indistinguishability of equivocal keys. Let (PK,SK) ← KeyGen(1λ) and (P̃K, S̃K) ←
KeyGen∗(1λ), then the indistinguishability of the two pairs of public keys follows from the
IND-CPA security of the FHE scheme.

Indistinguishability of equivocation. Without loss of generality, we will show that indistin-
guishability of equivocation holds for m̃ = 0. Let A be an adversary that breaks indistin-
guishability of equivocation; then we construct a PPT algorithm R such that RA breaks
E-hiding. R simulates the oracle for every query mi as follows. R invokes A and receives
some message mi and forwards it to the E-hiding challenger. Next it receives the chal-
lenge rcti and computes cti = QEncP̃K(0,mi; rcti) and forwards (rcti , cti) to A and outputs
whatever A does. Now, if rcti ← Drand(1λ) then cti ← QEncP̃K(0,mi; rcti), namely, the
view of A follows the distribution which corresponds to the left game in Definition 6.5
of indistinguishability of equivocation. On the other hand, if rcti = (rblindi − mi · rK̃);
then cti = (mi � K̃) � Encpk(0; rblindi −mi · rK̃) = Encpk(0; rblindi ) = QEncP̃K(0, 0; rblindi )
which implies that in this case the view of A follows the distribution of the right game in
Definition 6.5 of indistinguishability of equivocation. This means that the distinguishing
advantage of R is the same as that of Adv which leads to a contradiction.

Ciphertext Randomisation. The algorithm Rand adds the ciphertexts (ct, ct′1, . . . ,
ct′n). If ct is a ciphertext generated by QEncPK for b = 0 and (ct′1 . . . ct′n) are ciphertexts
generated by QEncPK for b = 1 then

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m] = 1− negl(λ)

since it is easy to see that the ciphertexts (ct′1 . . . ct′n) contain encryptions of zeros due to
the fact that R = Encpk(0). An analogous argument holds for ct and ct′1 . . . ct′n generated
by QEncP̃K for b = 0 and b = 1, respectively, since in this case the ciphertext ct contain
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an encryption of a zero (because in this case K̃ = Encpk(0)) and ciphertexts (ct′1 . . . ct′n)
contain encryptions of the corresponding m′i since R̃ = Encpk(1).

Distributed Decryption: As we mentioned above, we need distributed decryption to imple-
ment our MPC protocol. To this end, we assume that the common public key pk has been set
up where the secret key sk has been secret-shared among the players in such a way that they
can collaborate to decrypt. Notice that some setup assumption is always required to show UC
security in the dishonest majority setting. Roughly, we assume that a functionality is available
which generates a key pair and secret-shares the secret key among the players using a secret-
sharing scheme that is assumed to be given as part of the specification of the cryptosystem.
Since we allow corruption of all but one player, the maximal unqualified sets must be all sets
of n − 1 players. We point out that we could make a weaker set-up assumption, such as a
common reference string, and using a general UC secure multiparty computation protocol for
the common reference string model to implement the above functionality. While this may not
be very efficient, one only needs to run this protocol once in the life-time of the system. The
properties needed for the distributed decryption and its protocol are specified later.
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QFHE

Let FHE = (KeyGenFHE,Enc,Eval,Dec) be a special fully homomorphic encryption scheme.
QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) is defined as follows:

KeyGen(1λ):

1. (pk, sk)← KeyGenFHE(1λ).
2. K = Encpk(1; rK) where rK ← D′rand(1λ) and R = Encpk(0; rR) where rR ← D′rand(1λ)
3. Return as public key PK = (pk,K,R) and secret key SK = sk.a

KeyGen∗(1λ):

1. (pk, sk)← KeyGenFHE(1λ).

2. K̃ = Encpk(0; rK̃) where rK̃ ← D′rand(1λ) and R̃ = Encpk(1; rR̃) where rR̃ ← D′rand(1λ).

3. Return as public key P̃K = (pk, K̃, R̃) and secret key S̃K = (sk, rK̃ , rR̃).

QEncPK(b,m) :

1. Compute ctblind = Encpk(0; rblind) where rblind ← Drand(1λ).
2. If b 6∈ {0, 1} then output ⊥.
3. If b = 0 then output ct = (m�K) � ctblind otherwise

output ct = (m�R) � ctblind.

QEncP̃K(b, m̃) :

1. Compute c̃tblind = Encpk(0; r̃blind) where r̃blind ← Drand(1λ).
2. If b 6∈ {0, 1} then output ⊥.

3. If b = 0 then output c̃t = (m̃� K̃) � c̃tblind
otherwise

output c̃t = (m̃� R̃) � c̃tblind.

Equiv(b, P̃K, S̃K, c̃t, r̃blind,m, m̃):

1. If b = 0 compute rblind := r̃blind + (m̃−m) · rK̃ otherwise

rblind := r̃blind + (m̃−m) · rR̃

2. Run rstate ← InvDrand(rblind) and output rstate.

Rand(ct, ct′1 . . . , ct′n) : Output CT = ct � ct′1 � . . .� ct′n.

Procedures (Eval,Dec) are as defined in normal FHE schemes.
a Note that procedure Dec, given sk, runs as in normal FHE schemes (see Section 6.2.2.1), so there is no

need to provide rK in SK. We also enhance the notation of QEnc to include a bit b which indicates whether
the encryption is performed using the key K or R, respectively. In addition, the plaintext m̃ is usually set to
zero.

Figure 6.3: Description of QFHE scheme [DPR16]
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Part III

Results in the Information Theoretic
Setting
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Chapter 7

On the Communication Complexity of Gate-
by-Gate Protocols

In this chapter we present our lower bounds for IT MPC protocols. In particular, we present
our results in [DNPR16]. See Section 2.2.1 for a detailed overview of our contributions.

Overview. A plethora of IT secure protocols are known for general secure multi-party compu-
tation, in the honest majority setting, and in the dishonest majority setting with preprocessing.
All known protocols that are efficient in the circuit size of the evaluated function follow the
same “gate-by-gate” design pattern: we work through an arithmetic (boolean) circuit on secret-
shared inputs, such that after we process a gate, the output of the gate is represented as a
random secret sharing among the players. This approach usually allows non-interactive pro-
cessing of addition gates but requires communication for every multiplication gate. Thus, while
information-theoretic secure protocols are very efficient in terms of computational work, they
(seem to) require more communication and more rounds than computationally secure protocols.
Whether this is inherent is an open and probably very hard problem. However, in this chapter
we show that it is indeed inherent for protocols that follow the “gate-by-gate” design pattern.
We present the following results:

• In the honest majority setting, as well as for dishonest majority with preprocessing, any
gate-by-gate protocol must communicate Ω(n) bits for every multiplication gate, where n
is the number of players.

• In the honest majority setting, we show that one cannot obtain a bound that also grows
with the field size. Moreover, for a constant number of players, amortizing over several
multiplication gates does not allow us to save on the computational work, and – in a
restricted setting – we show that this also holds for communication.

All our lower bounds are met up to a constant factor by known protocols that follow the typical
gate-by-gate paradigm. Our results imply that a fundamentally new approach must be found
in order to improve the communication complexity of known protocols, such as BGW, GMW,
SPDZ etc.

Due to space constraints we refer to Section 2.2.2 for our contributions and high level tech-
niques for malicious IT MPC constructions with optimal (up to a constant factor) communication
complexity. More details can be found in [GIP15].

7.1 Techniques

Our Model. To avoid misunderstandings, let us be more precise about the model we assume:
we consider synchronous protocols that are semi-honest and statistically secure against static
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corruption of at most t of the n players. We assume that point-to-point secure channels are
available, and protocols are allowed to have dynamic communication patterns (in a certain
sense we make precise later), i.e., it is not fixed a priori whether a protocol sends a message in
a given time slot. Moreover, there is no bound on the computational complexity of protocols,
in particular arbitrary secret sharing schemes are allowed. A gate-by-gate protocol is a protocol
that evaluates an arithmetic circuit and for every multiplication gate, it calls a certain type of
subprotocol we call a Multiplication Gate Protocol (MGP). We define MGPs precisely later,
but they basically take as input random shares of two values a, b from a field and output random
shares of c = ab. Neither the MGP nor the involved secret sharing schemes have to be the same
for all gates. We do not even assume that the same secret sharing scheme is used for the inputs
and outputs of an MGP, we only require that the reconstruction threshold for the output sharing
is at most 2t for honest majority and at most n for dishonest majority.

An ordered gate-by-gate protocol must call the MGP’s in an order corresponding to the order
in which one would visit the gates when evaluating the circuit, whereas this is not required in
general. Thus the gate-by-gate notion is somewhat more general than what one might intuitively
expect and certainly includes much more than, say the standard BGW protocol – which, of
course, makes our negative results stronger.

Note that if multiplications did not require communication, it would immediately follow
(for semi-honest security) that we would have an unconditionally secure two-round protocol for
computing any function. But as mentioned above this is not a priori impossible: it follows,
for instance, from [IK00, IKM+13], that if less than a third of the players are corrupted, there
is indeed such a two-round protocol (which, however, requires super polynomial computational
work in general).

Honest Majority Setting. For honest majority protocols it is relatively easy to show that
multiplications do require communication: we argue in the paper that any MGP secure against
t corruptions requires that at least 2t + 1 players communicate. For protocols with dynamic
communication pattern this bound holds in expectation. It turns out that a protocol beating this
bound would imply an unconditionally secure two-party protocol computing a multiplication,
which is well known to be impossible. This implies that the communication complexity of any
gate-by-gate protocol for honest majority must be proportional to n ·s where s is the circuit size
and that the round complexity of an ordered gate-by-gate protocol must be at least proportional
to the multiplicative depth of the circuit. This matches the best protocols we know for general
Boolean circuits up to a constant factor. For arithmetic circuits over large fields one might
wonder whether the communication must grow with the field size. However, this cannot be
shown via a general bound on MGPs: we give an example secret sharing scheme allowing for an
MGP with communication complexity independent of the field size.

A gate-by-gate protocol is not allowed to amortise over several multiplications that can be
done in parallel. This is anyway not possible in general, for instance if we evaluate a “tall
and skinny” circuit forcing us to do multiplications sequentially. But for more benign circuits,
amortization is indeed an option. However, we show that in a restricted setting, MGPs doing k
multiplication gates in parallel must have communication that grows linearly with k. We also
show (in full generality) that amortization can save at most an O(n) factor in the computational
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work, matching what we can get from known techniques based on packed secret-sharing. This
proof technique for this bound is quite interesting: We base it on a lower bound by Winkler and
Wullschleger [WW10] on the amount of preprocessed data one needs for (statistically) secure
two-party computation of certain functions. We find it somewhat surprising that an information
theoretic bound on the size of data translates to a bound on local computation.

Dishonest Majority Setting with Preproccesing. The argument used for the honest ma-
jority case breaks down if we consider protocols in the preprocessing model (where correlated
randomness is considered): here it is indeed possible to compute multiplications with uncondi-
tional security, even if t = n − 1 of the n players are corrupt. Nevertheless, we show similar
results for this setting: here, any MGP secure against t = n − 1 corruptions must have all n
players communicate. This implies that, also in this setting, any gate-by-gate protocol has com-
munication complexity Ω(n · s). Note that existing constructions [DPSZ12] meet the resulting
bound for gate-by-gate protocols up to a constant factor.

To obtain the result, we exploit again the lower bound by Winkler and Wullschleger, but
in a different way. In a nutshell, we show that constructions beating our bound would imply a
protocol that is too good to be true according to [WW10].

The result holds exactly as stated above assuming that the target secret-sharing scheme
that the protocol outputs shares in is of a certain type that includes the simple additive secret-
sharing scheme (which is also used in [DPSZ12], [NNOB12]). If we put no restrictions on the
target scheme, the results get a bit more complicated. Essentially what we show is the following:
suppose we replace the multiplication gate by a more general gate that does some computation
on a fixed number of inputs, such as the inner product of two vectors. Then we show that once
the computation done by the gate gets large enough (in a certain sense we define in the paper),
again a protocol handling such a gate must communicate a lot. It is the target secret-sharing
scheme that determines how “large” the gate needs to be, see more details within.

7.2 Preliminaries in the IT setting

Notation. We say that a function ε is negligible if ∀c ∃ σc ∈ N such that if σ ≥ σc then
ε(σ) < σ−c. We write [n] to denote the set {1, 2, ..., n}. Moreover, calligraphic letters denote
sets. The complement of a set A is denoted by A. The distribution of a random variable X over
X is denoted by PX . Given the distribution PXY over X×Y, the marginal distribution is denoted
by PX(x) :=

∑
y∈Y PXY (x, y). A conditional distribution PX|Y (x, y) over X ×Y defines for every

y ∈ Y a distribution PX|Y=y. The statistical distance between two distributions PX and P ′X over
the domain X is defined as the maximum, over all (inefficient) distinguishers D : X → {0, 1}, of
the distinguishing advantage SD(PX , P ′X) =

∣∣Pr[D(X) = 1]− Pr[D(X ′) = 1]
∣∣. The conditional

Shannon entropy of X given Y is defined as H(X|Y ) := −
∑
x,y PXY (x, y) logPX|Y (x, y) where

all logarithms are binary and the mutual information of X and Y as I(X;Y ) = H(X)−H(X|Y ).
We also use h(p) = −p log p− (1−p) log(1−p) for the binary entropy function. Furthermore, we
denote by Πf an n-party protocol for a function f and by ΠA,B

f a two-party protocol between
parties A and B.
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Protocols. We consider protocols involving n parties, denoted by the set P = {P1, . . . ,Pn}.
The parties communicate over synchronous, point-to-point secure channels. We consider non-
reactive secure computation tasks, defined by a deterministic or randomized functionality
f : X1×. . .×Xn → Z1×. . .×Zn. The functionality specifies a mapping from n inputs to n outputs
the parties want to compute. The functionality can be fully specified by a conditional probabil-
ity distribution PZ1···Zn|X1···Xn , where Xi is a random variable over Xi, Zi is a random variable
over Zi, and for all inputs (x1, . . . , xn) we have a probability function PZ1···Zn|X1···Xn=(x1,...,xn)
and PZ1···Zn|X1···Xn=(x1,...,xn)(z1, . . . , zn) is the probability that the output is (z1, . . . , zn) when
the input is (x1, . . . , xn). Vice versa, we can consider any conditional probability distribution
PZ1···Zn|X1···Xn as a specification of a probabilistic functionality. In the following we will freely
switch between the terminology of probabilistic functionalities and conditional probability dis-
tributions.

We consider stand-alone security as well as static and passive corruptions of t out of n
parties for some t ≤ n. This means that a set of t parties are announced to be corrupted before
the protocol is executed, and the corrupted parties still follow the protocol but might pool
their views of the protocol to learn more than they should. We consider statistical correctness
and statistical security. We allow simulators to be inefficient. Except that we do not consider
computational security, the above model choices are the possible weakest ones, which just makes
our impossibility proofs stronger.

The Security Parameter. The security is measured in a security parameter σ and we require
that the "insecurity" goes to 0 as σ grows. We do not allow n to grow with σ, i.e., we require
that the protocol can be made arbitrarily secure when run among a fixed set of parties by just
increasing σ. The literature sometimes consider protocol which only become secure when run
among a sufficiently large number of parties. We do not cover such protocols.

Communication Model. We assume that each pair of parties are connected by a secure
communication channel, which only leaks to the adversary the length of each message sent1.
We consider protocols proceeding in synchronous rounds. Following [DPP14] we assume that in
each round each pair of parties (Pi,Pj) will specify a prefix free code Mi,j ⊂ {0, 1}∗ and then Pi
will send a message m ∈Mi,j . The codes might be dynamically chosen, but we require that the
parties agree on the codes. If the length of a sent message does not match the length specified
by the receiver, the receiver will terminate with an error symbol ⊥ as output, which will make
it count as a violation of correctness.

Let ε denote the empty string and let E = {ε}. If Mi,j = E, then we say that Pi sends
no message to Pj in that round, i.e., we use the empty string to denote the lack of a message.
Notice that if Mi,j 6= E, then ε 6∈ Mi,j as Mi,j must be prefix free. Therefore, at the point
where Pj specifies the code Mi,j for a given round, Pj already knows whether or not Pi will
send a message in that round. We in particular say that Pj anticipates a message from Pi when
Mi,j 6= E. We will only be interested in counting the number of messages sent, not their size.

1This is a standard way to model secure communication by an ideal functionality since any implementation
using crypto would leak the message length.
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When the protocol is correct, the number of messages sent is obviously equal to the number of
messages anticipated.

Definition 7.1 (Anticipated message complexity). We say that the expected message complex-
ity of a party is the expected number of times a non-empty message is sent or anticipated by
the party. The expected message complexity of a protocol is simply the sum of the expected
message complexity of the parties, divided by 2. We divide by 2 to avoid counting a transmitted
message twice. The expectation is taken over the randomness of the players and maximised over
all inputs.

The reason for insisting on a prefix free code for this slightly technical notion is to avoid a
problem we would have if we allowed the communication pattern to vary arbitrarily: consider
a setting where Pj wants to send a bit b to Pi. If b = 0 it sends no message to Pi or say the
empty string. If b = 1 it sends 0 to Pi. If b is uniformly random, then in half the cases Pj
sends a message of length 0 and in half the cases it sends a message of length 1. This means
that a more liberal way of counting the communication complexity would say that the expected
communication complexity is 1

2 . This would allow to exchange 1 bit of information with an
expected 1

2 bits of communication. This does not seem quite reasonable. The prefix-free model
avoids this while still allowing the protocol to have a dynamic communication pattern. Note
that since we want to prove impossibility it is stronger to allow protocols with dynamic rather
than fixed communication patterns.

Protocols with Preprocessing. We will also consider protocols for the preprocessing model.
In the preprocessing model, the specification of a protocol also includes a joint distribution
PR1···Rn over R1 × . . . × Rn, where the Ri’s are finite randomness domains. This distribution
is used for sampling correlated random inputs (r1, . . . , rn) ← PR1···Rn received by the parties
before the execution of the protocol. Therefore, the preprocessing is independent of the inputs.
The actions of a party Pi in a given round may in this case depend on the private random input
ri received by Pi from the distribution PR1···Rn and on its input xi and the messages received
in previous rounds. In addition, the action might depend on the statistical security paramenter
σ which is given as input to all parties along with xi and ri. Using the standard terminology
of secure computation, the preprocessing model can be thought of as a hybrid model where the
parties have one-time access to an ideal randomized functionality P (with no inputs) providing
them with correlated, private random inputs ri.

Security Definition. A protocol securely implements an ideal functionality with an error of
ε, if the entire view of each corrupted player can be simulated with an error of at most ε in an
ideal setting, where the players only have black-box access to the ideal functionality. Formally,
consider Definition 7.2 below.

Definition 7.2. Let Π be a protocol for the PR1···Rn-preprocessing model. Let PZ1···Zn|X1···Xn
be an n-party functionality. Let Adv be a randomized algorithm, which chooses to corrupt a set
A ⊆ {1, . . . , n} of at most t ∈ N parties. Let x = (x1, . . . , xn) ∈ X1 × . . .×Xn be an input. Let
PatternΠ(σ,x) denote the communication pattern in a random run of the protocol Π, i.e., the
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list of the length of the messages exchanged between all pairs of parties in all rounds, on input x
and with security parameter σ. Define ViewΠ

Adv(σ,x) to be the PatternΠ(σ,x) concatenated with
the view of the parties Pi for i ∈ A in the same random run of the protocol Π. Let OutputΠ

A(σ,x)
be just the inputs and outputs of the honest parties Pi for i 6∈ A in the same random run of the
protocol Π. Let

ExecΠ
Adv(σ,x) = (ViewΠ

Adv(σ,x),OutputΠ
A(σ,x)) .

Let S be a randomized function called the simulator. Sample z according to PZ1···Zn|X1···Xn(x).
Give input {(xi, zi)}i∈A to S. Let S({(xi, zi)}i∈A) denote the random variable describing the
output of S. Let

SS(σ,x) =
(
S({(xi, zi)}i∈A), {(xi, zi)}i 6∈A

)
.

The protocol is ε-semi-honest secure with threshold t if there exist S such that for all x and all
A with |A| ≤ t it holds that

SD(ExecΠ
Adv(σ,x),SS(σ,x)) ≤ ε(σ) .

The protocol is statistically semi-honest secure with threshold t if it is ε-semi-honest secure for
a negligible ε.

Secret-Sharing. Unlike Definition 5.3.5, in this section we present a definition of secret shar-
ing tailored to this section. A (t + 1)-out-of-n secret-sharing scheme takes as input a secret s
from some input domain and outputs n shares, with the property that it is possible to efficiently
reconstruct s from every subset of t + 1 shares, but every subset of at most t shares reveals
nothing about the secret s. The value t is called the privacy threshold of the scheme.

A secret-sharing scheme consists of two algorithms: the first algorithm, called the sharing
algorithm Share, takes as input the secret s and the parameters t and n, and outputs n shares.
The second algorithm, called the recovery algorithm Recover, takes as input t + 1 shares and
outputs a value s. It is required that the reconstruction of shares generated from a value s
produces the same value s. Formally, consider the above definition.

Definition 7.3 (Secret-sharing). Let F be a finite field and let n, t ∈ N. A pair of algorithms
S n
t = (Share,Recover) where Share is randomized and Recover is deterministic are said to be a

secret-sharing scheme if for every n, t ∈ N, the following conditions hold.

Reconstruction: For any set T ⊆ {1, . . . , n} such that |T | > t and for any s ∈ F it holds that

Pr[Recover(ShareT (s, n, t)) = s] = 1

where ShareT is the restriction of the outputs of Share to the elements in T .

Privacy: For any set T ⊆ {1, . . . , n} such that |T | ≤ t and for any s, s′ ∈ F it holds that

ShareT (s, n, t) ≡ ShareT (s′, n, t)

where we use ≡ to denote that two random variables have the same distribution.
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Additive Secret-Sharing. In an additive secret-sharing scheme, n parties hold shares the
sum of which yields the desired secret. By setting all but a single share to be a random field
element, we ensure that any subset of n− 1 parties cannot recover the initial secret.

Definition 7.4 (Additive secret-sharing). Let F be a finite field and let n ∈ N. Consider the
secret-sharing scheme A n = (Share,Recover) defined below.

• The algorithm Share on input (s, n) performs the following:

1. Generate (s1, . . . , sn−1) uniformly at random from F and define sn = s−
∑n−1
i=1 si.

2. Output (s1, . . . , sn) where si is the share of the i-th party.

• The recovery algorithm Recover on input (s1, · · · , sn), outputs
∑n
i=1 si.

It is easy to show that the distribution of any n− 1 of the shares is the uniform one on Fn−1

and hence independent of s.

Secret-sharing Notation. In the sequel for a value s ∈ F we denote by [s]S n
t a random

sharing of s for the secret-sharing scheme S n
t . That is, [s]S n

t ← Share(s, n, t) where [s]S n
t =

(s1, . . . , sn). Similarly, we denote by [s]A n a random additive sharing of s secret shared among
n parties.

Primitives. In the sequel we consider the following two-party functionalities which naturally
extend to the multi-party setting.

Definition 7.5 (Multiplication MULT functionality). Let F be a finite field. Consider two
parties A and B. We define the two-party functionality MULT(a, b) which on input a ∈ F from
party A and b ∈ F from party B outputs MULT(a, b) = a · b to both parties.

Definition 7.6 (Inner Product IPκ functionality). Let F be a finite field and let κ ≥ 1. Consider
two parties A and B. We define the two-party functionality IPκ(a, b) which on input a ∈ Fκ
from party A and b ∈ Fκ from party B outputs IPκ(a, b) =

∑κ
i=1 aibi to both parties.

7.3 Secure Computation in the Plain Model

We first investigate the honest majority scenario. As explained in the introduction, we will
consider protocols that compute arithmetic circuits over some field securely using secret-sharing.
All known protocols of this type handle multiplication gates by running a subprotocol that takes
as input shares in the two inputs a and b to the gate and output shares of the product ab, such
that the output shares contain only information about ab (and no side information on a nor b).
Accordingly, we define below a multiplication gate protocol (MGP) to be an interactive protocol
for n players that does exactly this, and then show a lower bound on the communication required
for such a protocol.
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Definition 7.7 (Multiplication Gate Protocol ΠMULT). Let F be a finite field and let
n ∈ N. Let S n

t and Ŝ n
t′ be two secret-sharing schemes as per Definition 7.3. A protocol ΠMULT

is an n-party Multiplication Gate Protocol (MGP) with thresholds t, t′, input sharing-scheme
S n
t and output sharing-scheme Ŝ n

t′ if it satisfies the following properties:

Correctness: In the interactive protocol ΠMULT, players start from sets of shares [a]S n
t ←

Share(a, n, t) and [b]S n
t ← Share(b, n, t). Each player outputs a share such that these

together form a set of shares [ab]Ŝ
n
t′ . Moreover, t′ < 2t.

t-privacy: If the protocol is run on randomly sampled shares [a]S n
t and [b]S n

t , then the only
new information the output shares can reveal to the adversary is ab. We capture this by
requiring that for any adversary corrupting a player subset A of size at most t, there exists
a simulator SA which when given the input shares of the parties in A (denoted by [a]S

n
t
A ,

[b]S
n
t
A ) and the product ab, will simulate the honest parties’ output shares (denoted by

[ab]
Ŝ n
t′

A ) and the view of the parties in A with statistically indistinguishable distribution.
Formally, for any adversary ADV corrupting a player set A with |A| ≤ t there exist SA
such that for randomly sampled shares [a]S n

t ← Share(a, n, t) and [b]S n
t ← Share(b, n, t),

it holds that

SD
((

ViewΠMULT
ADV (σ, [a]S n

t , [b]S n
t )), [ab]

Ŝ n
t′

A

)
, SA(σ, [a]S

n
t
A , [b]S

n
t
A , ab)

)
≤ ε(σ), (7.1)

where σ is a security parameter and where, in the underlying random experiment, prob-
abilities are taken over the choice of input shares as well as random coins of the protocol
and simulator.

Note that we do not require the input and output sharing schemes to be the same, we only
require that the output threshold is not too large (t′ < 2t). Known MPG’s actually have t′ = t
to allow continued computation, we want to be more generous to make our lower bound stronger.
Note also that we do not require the simulators to be efficient.

Recall that we use the term gate-by-gate protocol to refer to any protocol that computes
an arithmetic circuit securely by invoking an MGP for each multiplication gate in the circuit
such that the sets of shares that are input are randomly chosen. We leave unspecified what
happens with addition gates as this is irrelevant for the bounds we show. An ordered gate-by-
gate protocol invokes MGP’s for multiplication gates in an order corresponding to the order in
which one would visit the gates when evaluating the circuit.

In the following we show that any MGP in a gate-by-gate protocol must communicate for
every multiplication gate in the honest majority setting even if only semi-honest security is
required. The technique of our proof is as follows. We build an information-theoretic two-party
computation protocol utilizing an n-party MGP by emulating multiple parties (in the head)
and then use the impossibility result on the existence of an information-theoretic two-party
computation protocol to show a contradiction.

Theorem 7.1. There exists no MGP ΠMULT as per Definition 7.7 with thresholds t, t′, and
with expected anticipated message complexity ≤ 2t.
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Proof. Suppose for contradiction that there exists an MGP ΠMULT with expected anticipated
communication complexity at most 2t. We first show a proof in the simpler case where the
communication pattern is fixed. This means that at most 2t parties are communicating, i.e.,
they send or receive messages and the set of parties that communicate is known and fixed. For
simplicity of exposition, suppose that these parties are P1, . . . ,P2t. We are going to use ΠMULT
to construct a two-party unconditionally secure protocol ΠA,B

MULT which securely computes the
MULT function between parties A,B as per Definition 7.5.

In particular, given two parties A and B, with inputs a, b ∈ F, respectively, involved in the
ΠA,B

MULT protocol, we are going to let A emulate the first t parties that communicate and B

emulate the other t parties, say Pt+1, . . . ,P2t. The protocol ΠA,B
MULT proceeds as follows:

Protocol ΠA,B
MULT(σ, a, b)

Input Phase:
1. Parties A,B secret share their inputs a, b using the secret-sharing scheme S n

t . More
specifically, A computes [a]S n

t ← Share(a, n, t) and B computes [b]S n
t ← Share(b, n, t).

2. Party A sends the input shares (at+1, . . . , a2t) to party B and Party B sends the input
shares (b1, . . . , bt) to party A.

Evaluation Phase:
1. Parties A,B invoke the protocol ΠMULT(σ, a1, . . . an, b1, . . . bn). The emulation

of ΠMULT yields a set of shares [c]Ŝ
n
t′ and outputs (c1, . . . , ct) to party A and

(ct+1, . . . , c2t) to party B.
Output Phase:

2. Party A sends the output shares (c1, . . . , ct) to party B and Party B sends the output
shares (ct+1, . . . , c2t) to party A.

3. Each party given 2t > t′ shares of c recovers the output c = a · b

We now show that the above protocol is correct and secure. Correctness follows immediately
from t′ < 2t - as then 2t shares are enough to reconstruct. The protocol is secure (private) due
to the t-privacy property of ΠMULT. More precisely, if party A is corrupted, we need to simulate
his view of the protocol given a and the product ab. We do this as follows: Let A be the set
of parties A emulates in the MGP. We now compute [a]S n

t ← Share(a, n, t) and sample [b]S
n
t
A

which can be done by the privacy property of S n
t . We then run the simulator SA guaranteed

by the t-privacy property to get SA(σ, [a]S
n
t
A , [b]S

n
t
A , ab). Note that this output includes A’s view

of the MGP as well as all output shares.
The simulator now outputs [a]S n

t , [b]S
n
t
A and SA(σ, [a]S

n
t
A , [b]S

n
t
A , ab). This is statistically

indistinguishable from A’s view of ΠA,B
MULT(σ, a, b) by the privacy property of S n

t and equation
(7.1). A similar simulator for B’s view is easy to construct.

However, the above leads to a contradiction since it is well known [BOGW88, CCD88] that
it is impossible to realize passively secure two-party multiplication (such as the ΠA,B

MULT protocol)
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in the information theoretic setting (even if inefficient simulators are allowed). Therefore, the
theorem follows.

We now address the case where the communication pattern might be dynamic. We say that
a party communicated if it sent a non-empty message or if it anticipated a non-empty message.
So by definition, the expected number of communicating parties is ≤ 2t. Since the observed
value is an integer, there is some non-zero, constant probability p such that the observed value
of the number of communication parties is at most 2t. We can therefore pick a subset C of the
parties of size 2t such that it happens with probability at least p/

(n
2t
)
that only the parties in C

communicate. Since we can increase the security parameter σ independently of n, the number
p/
(n
2t
)
is a positive constant (in σ). We can then modify ΠA,B

MULT(a, b) such that B runs t parties
in C and A runs the other t parties. The protocol runs as ΠA,B

MULT(a, b) except that if it A or
B observe that a party in C anticipates a non-empty message from a party outside C, then the
execution is terminated. In case the protocol terminates, the two parties just try again. Since
p/
(n
2t
)
is a positive constant this succeeds in an expected constant number of tries. Notice that

when the protocol succeeds, all parties in C received all the messages they would have received in
a run of ΠA,B

MULT(a, b) where all the parties were active, as parties only receive the messages they
anticipate. Hence the parties in C have correct outputs (except with negligible probability). For
the same reason the output of the parties simulated by A and B will be correct. Hence A and B
can reconstruct the output from the 2t shares. We can also argue that the protocol is private:
We will simulate A’s (or B)’s view by running the simulator SA (where again A is the set of
parties emulated by A) repeatedly until a view is produced where no party in C anticipates a
message from outside of C. Note that SA simulates the view of an adversary corrupting A, and
this view includes the communication pattern from which it is evident who anticipates messages.

The above theorem immediately implies the following.

Corollary 7.2. Any gate-by-gate protocol that is secure against t = Θ(n) corruptions must
communicate Ω(n · |C|) bits where |C| is the size of the circuit C to compute, and moreover,
an ordered gate-by-gate protocol must have a number of rounds that is proportional to the
(multiplicative) depth of C.

Jumping ahead, we note that the arguments for this conclusion break down completely when
we consider secure computation in the preprocessing model with dishonest majority since in such
a model it is no longer true that two-party unconditionally secure multiplication is impossible:
just a single preprocessed multiplication triple will be enough to compute a multiplication. We
return to this issue in the next section.

A bound that grows with the field size? It is natural to ask if we can get a lower bound
on the complexity of an MPG that grows with the field size? after all, existing MGPs do need
to send more bits for larger fields. However, the answer is no, as the following example shows:
for a ∈ F, define za to be 0 if a = 0 and 1 otherwise. Then we represent an element a ∈ F
as a pair (za, `a) where `a is randomly chosen if a = 0 and otherwise `a = logg(a), where g
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is a fixed generator of the multiplicative group F∗. Let u = |F∗|. Observe that now we have
(zab, `ab) = (za · zb, (`a + `b) mod u).

We now construct a secret sharing scheme: given a secret a ∈ F, we first compute (za, `a)
and then share za using, e.g., Shamir’s scheme and share `a additively modulo u. An MGP for
this scheme can use a standard protocol to compute shares in za · zb and local addition to get
shares in (`a + `b) mod u. Clearly, the communication complexity of this MGP does not depend
on |F|.

Of course, the secret sharing scheme we defined is not efficient (at least not in all fields)
because one needs to take discrete logs. This is not formally a problem since we did not make
any assumptions on the efficiency of secret sharing schemes. But we can in fact get a more
satisfactory solution by replacing the additive sharing of the discrete log with black-box sharing
directly over the group F∗ [CF02]. This is doable in polynomial time, will cost a factor that is
logarithmic in the number of players, but since black-box secret-sharing is homomorphic over
the group operation, the resulting MGP still has communication independent of |F|.

Amortized Multiplication Gate Protocols. There is one clear possibility for circumvent-
ing the bounds we just argued for gate-by-gate protocols, namely: what if the circuit structure
allows us to do, say k multiplications in parallel? Perhaps this can be done more efficiently than
k separate multiplications? Of course, this will not help for a worst case circuit whose depth is
comparable to its size. But in fact, for “nicer” circuits, we know that such optimizations are pos-
sible, based on so-called packed secret-sharing. The catch, however, is that apart from loosing
in resilience this only works if there is a gap of size Θ(k) between the privacy and reconstruction
thresholds of the secret-sharing scheme used, so the number of players must grow with k.

One may ask if this is inherent, i.e., can we save on the communication needed for many
multiplication gates in parallel, only by increasing the number of players? While we believe this
is true, we were not able to show it in full generality. But we were able to do so for computational
complexity, as detailed below. Furthermore, for a restricted setting we explain below and a fixed
number of players, we could show that the communication must grow linearly with k.

First, we can trivially extend Definition 7.3 to cover schemes in which the secret is a vector
a = (a1, . . . , ak) of field elements instead of a single value. A further extension covers ramp
schemes in which there are two thresholds: the privacy threshold t which is defined as in Defini-
tion 7.3 and a reconstruction threshold r > t, where any set of size at least r can reconstruct the
secret. Such a scheme is denoted by S n

t,r. Note that the shares in this case may be shorter than
the secret, perhaps even a single field element per player. We can now define a simple extension
of the multiplication gate protocol concept:

Definition 7.8 (k-Multiplication Gate Protocol ΠMULTk). Let F be a finite field and let n ∈ N.
Let S n

t,r and Ŝ n
t,r be two ramp sharing schemes defined over F, for sharing vectors in Fk. ΠMULTk

is said to be a k-Multiplication Gate Protocol (k-MGP) with thresholds t, r, input sharing
scheme S n

t,r and output sharing scheme Ŝ n
t,r if it satisfies the following properties:

Correctness: In the interactive protocol ΠMULTk , players start from sets of shares [a]S
n
t,r and

[b]S
n
t,r . Each player outputs a share such that these together form a set of shares [a ∗ b]Ŝ

n
t,r ,

where a ∗ b is the coordinatewise product of a and b.
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t-privacy: If the protocol is run on randomly sampled shares [a]S n
t and [b]S n

t , then the only
new information the output shares can reveal to the adversary is a ∗b. We capture this by
requiring that for any adversary corrupting player subset A of size at most t, there exists
a simulator SA which when given the input shares of the parties in A (denoted by [a]S

n
t
A ,

[b]S
n
t
A ) and the product ab, will simulate the honest parties’ output shares (denoted by

[a ∗ b]
Ŝ n
t′

A ) and the view of the parties in A with statistically indistinguishable distribution.
Formally, for any adversary ADV corrupting player set A with |A| ≤ t there exist SA such
that for randomly sampled shares [a]S n

t ← Share(a, n, t) and [b]S n
t ← Share(b, n, t), it

holds that

SD
((

ViewΠkMULT
ADV (σ, [a]S n

t , [b]S n
t )), [a ∗ b]

Ŝ n
t′

A

)
, SA(σ, [a]S

n
t
A , [b]S

n
t
A ,a ∗ b)

)
≤ ε(σ), (7.2)

where σ is a security parameter and where, in the underlying random experiment, prob-
abilities are taken over the choice of input shares as well as random coins of the protocol
and simulator.

Before giving our result on k-MGPs we note that for any interactive protocol, it is always
possible to represent the total computation done by the players as an arithmetic circuit over a
finite field (arithmetic circuits can emulate Boolean circuit which can in turn emulate Turing
machines). We can encode messages as field elements and represent sending of messages by
wires between the parts of the circuit representing sender and receiver. For a protocol Π, we
refer to an algorithm outputting such a circuit as an arithmetic representation of Π. Note that
such a representation is not in general unique, but once we have chosen one, it makes sense to
talk about, e.g., the number of multiplications done by a player in Π.

Theorem 7.3. Let t < r ≤ n ∈ N. Also let P = {P1, . . . ,Pn} be a set of parties. Assume that
the k-MGP ΠMULTk defined over F has thresholds t, r. Then for any arithmetic representation
of ΠMULTk (over any finite field) and for each subset S ⊂ P of size n− 2t, the total number of
multiplications done by players in S is Ω(k)

Proof. Suppose for contradiction that there exists a k-MGP ΠMULTk in which the total number
of multiplications done by players in S is o(k). Assume for notational convenience that S =
{P2t+1, . . . ,Pn}. We are going to use it to construct a two-party unconditionally secure protocol
ΠA,B

MULT in the preprocessing model which securely computes k multiplications as follows. We
let u ← PU denote the correlated randomness we will use in ΠA,B

MULT. Given two parties A and
B involved in the ΠA,B

MULT protocol, the idea is to use the assumed k-MGP where A emulates t
players and B emulates another t players. In addition, parties A,B together emulate the rest
of the parties in S. This can be done using the preprocessed data u: we consider the parties
in S as a reactive functionality fS which can be implemented using an existing protocol in the
preprocessing model. One example of such a protocol is the SPDZ protocol [DPSZ12] denoted
by ΠSPDZ

fS
2 which uses additive-secret sharing. Therefore, protocol ΠA,B

MULT proceeds as follows:

2We do passive security here, so a simpler variant of SPDZ will suffice, without authentication codes on the
shared values.
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Protocol ΠA,B
MULT({ai}i∈[k], {bi}i∈[k], u):

Input Phase:
1. ∀i ∈ [k], parties A,B secret share their inputs ai, bi using the ramp sharing

scheme S n
t,r. So A computes [a]S

n
t,r ← Share((a), n, t) and B computes [b]S

n
t,r ←

Share((b), n, t). For simplicity of exposition, we denote by (ā1, . . . , ān), (b̄1, . . . , b̄n)
the shares of [a]S

n
t,r and [b]S

n
t,r , respectively.

2. Party A sends the input shares (ā1, . . . , āt) to party B and Party B sends the input
shares (b̄t, . . . , b̄2t) to party A.

3. Additively secret share the inputs (ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the parties in S
between A and B using the additive secret-sharing A 2 and obtain the shares
([ā2t+1]A 2

, . . . , [ān]A 2 , [b̄2t+1]A 2
, . . . , [b̄n]A 2). For the following phase, as we men-

tioned above, we will think of the computation done by the parties in S as a reactive
functionality fS which is implemented using the protocol ΠSPDZ

fS
in the preprocessing

model.

Evaluation Phase:
Parties A,B invoke the protocol ΠMULTk([a]S

n
t,r , [b]S

n
t,r) in which A,B emulate t

parties each, and they together emulate the rest, n−2t players, using the preprocessed
data u invoking protocol ΠSPDZ

fS
. To this end, note that ΠSPDZ

fS
represents data by

additive secret-sharing. Values (ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the parties in S were
already additively shared, so they can be used directly as input to ΠSPDZ

fS
.

Now, the emulation of ΠMULTk is augmented with the protocol ΠSPDZ
fS

as follows:
when a party in S would do a local operation, we do the same operation in ΠSPDZ

fS
.

When a party outside S sends a message to a party in S an additive secret-sharing
of that message is formed between A and B. When a party in S sends a mes-
sage to a party outside S the corresponding additive secret-sharing is reconstructed
towards A or B, depending on who emulates the receiver. In the end, we will
obtain additive sharings between A and B of the outputs of parties in S, namely
([c̄2t+1]A 2

, . . . , [c̄n]A 2).

Output Phase:
1. A sends the output shares (c̄1, . . . , c̄t) to B, B sends the output shares (c̄t+1, . . . , c̄2t)

to A computed by ΠMULTk , and A and B exchange their additive shares
([c̄2t+1]A 2

, . . . , [c̄n]A 2) in order to recover (c̄2t+1, . . . , c̄n).
2. Now both A and B have n ≥ r shares of the output and can recover the result a ∗ b.

We now show that the above protocol is correct and secure. Correctness follows immediately
from the correctness of ΠMULTk and ΠSPDZ

fS
. We argue that the protocol is secure (private) due

to the security of ΠSPDZ
fS

and the t-privacy property of the MGP ΠMULTk (see equation (7.1)).
For the case where A is corrupted, we first observe that by using the simulator for the ΠSPDZ

fS
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protocol, we can argue that the view of A in the real protocol is statistically close to the one
obtained by replacing players in S by the ideal functionality fS .

We can then make a simulator for corrupt A in the fS-hybrid model, as follows: The shares
received by A in the input phase can be simulated by the privacy property of the input sharing
scheme, and the rest of the view can be simulated by invoking the simulator SA of the protocol
ΠMULTk guaranteed by Definition 7.7, on input [a]S

n
t
A , [b]S

n
t
A ,a ∗b. Note that SA is in charge of

simulating fS . It can therefore define the responses of fS such that they are consistent with the
view generated by SA.3

We therefore conclude from equation (7.2) that SA generates a view that is statistically
indistinguishable from the real view of an adversary corrupting A. A similar argument holds for
B.

Now note that the preprocessed data required by the protocol ΠSPDZ
fP

amount to a constant
number of field elements for each multiplication done. This means that our 2-party protocol
needs o(k) preprocessed field elements by assumption on ΠMULTk . However, this leads to a
contradiction since by results in [WW10], it is impossible for two parties to compute k multipli-
cations with statistical security using preprocessed data of size o(k) field elements.

What this theorem shows is, for instance, that if we want each player to do only a constant
number of local multiplications in a k-MGP, then n needs to be Ω(k). Since this is precisely
what protocols based on packed sharing can achieve (see, e.g., [DIK+08]), the bound in the
theorem is in this sense tight. What the theorem also says is that every subset of size n − 2t
needs to work hard, so in the case where we tolerate a maximal number of corruptions, i.e.,
n = 2t+ 1, we see that a gate by gate protocol in this case must have computational complexity
Ω(n|C|), for any circuit of size |C|, not only for “tall and skinny” circuits as we had before.

7.4 Secure Computation in the Preprocessing Model

It is well known that all functions can be computed with unconditional security in the setting
where n − 1 of the n players may be corrupted, and where the players are given correlated
randomness, also known as preprocessed data, that does not have to depend on the function to
be computed, nor on the inputs. Winkler and Wullschleger [WW10] proved lower bounds on the
the amount of preprocessed data needed to compute certain functions with statistical security
where the bound depends on certain combinatorial properties of the target function.

All existing protocols in the preprocessing model that are efficient in the circuit size of the
function, work according to the gate-by-gate approach we encountered in the previous section.
We can define (ordered) gate-by-gate protocols and MGPs exactly as for the honest majority
setting, with two exceptions: MGPs are allowed to consume preprocessed data, and the output
threshold t′ must equal the input threshold t. This is because we typically have t = n − 1 in
this setting, and then it does not make sense to consider t′ > t, then even all players cannot
reconstruct the output,

3 Note that ΠSPDZ
fS reveals the structure of the circuit for fS . This is secure as we assume that the parties in

S are represented as known arithmetic circuits.
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As before, we want to show that multiplication gate protocols require a certain amount
of communication, but as mentioned before, we can no longer base ourselves on impossibility
of unconditionally secure multiplication for two parties, since this is in fact possible in the
preprocessing model. Instead, the contradiction will come from the known lower bounds on the
size of the preprocessed data needed to compute certain functions.

7.4.1 Protocols based on Additive Secret-Sharing

We start by showing that any gate-by-gate protocol must communicate for every multiplication
gate when the underlying secret sharing scheme is the additive one. We show that an MGP that
does not communicate enough implied a protocol that contradicts the lower bound by Winkler
and Wullschleger [WW10] on the the amount of preprocessed data needed to compute certain
functions with statistical security.

Theorem 7.4. Consider the preprocessing model where n−1 of the n players may be passively
corrupted. In this setting, there exists no MGP ΠMULT with expected anticipated communica-
tion complexity ≤ n− 1 and with additive secret-sharing A n as output sharing scheme.

Proof. Suppose for contradiction that there exists an MGP ΠMULT (with preprocessed data
u ← PU ) which contradicts the claim of the theorem. Similar to Theorem 7.1 we will first
assume a fixed communication pattern. Assume for notational convenience that only the parties
P1, . . . ,Pn−1 communicate. Given two parties A and B, we are going to construct a two-party
protocol ΠA,B

MULT which on input a, b ∈ F from A,B, respectively, securely computes ab. The
idea is for A to emulate the n − 1 players who communicate in ΠMULT while B emulates the
last player. In particular, protocol ΠA,B

MULT proceeds as follows:

Protocol ΠA,B
MULT

Input Phase:
1. Parties A,B secret share their inputs a, b using the input secret-sharing scheme A n

of ΠMULT. More specifically, A computes [a]A n ← Share(a, n, n− 1) and B computes
[b]A n ← Share(b, n, n− 1).

2. Party A sends the input share an to party B and Party B sends the input shares
(b1, .., bn−1) to party A.

Evaluation Phase:
1. Parties A,B invoke the MGP ΠMULT as per Definition 7.7 in the preprocessing model

where A emulates the n− 1 players who communicate, and we assume these are the
first n − 1 players. This means that this phase involves no communication between
A and B, but it may consume some preprocessed data u. The execution of ΠMULT
yields a sharing of [c]A n and outputs (c1, ..., cn−1) to party A and cn to party B.

Output Phase:
1. A sends

∑n−1
i=1 ci to B and B sends cn to A. The parties add the received values to

recover the output c = a · b.
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Correctness of this protocol follows immediately. The protocol can be argued to be se-
cure(private). In particular, the simulator S for ΠA,B

MULT proceeds as follows. The preprocessing
data to be used by the corrupted party can be simulated with the correct distribution without
any knowledge of the inputs. In the input phase, the corrupted party receives only an unqualified
set of shares whose distribution can be simulated perfectly. There is no communication to be
simulated in the evaluation phase. In the output phase, it is the case that whenever the protocol
computes the correct result, then the share received from the honest party is trivial to simulate
because it is determined from the corrupted party’s own share and the result ab. Hence, the
only source of error is the negligible probability that the output is wrong in the real execution,
so it follows that

SD(ExecΠA,BMULT
Adv (σ, (a, b)),SS(σ, (a, b))) ≤ ε(σ).

However, we can say even more: Let u ← PU be the preprocessed data that is consumed
during the protocol (ΠMULT uses preprocessed data). We now define a new protocol ΠA,B

MULTk
that will compute k independent multiplications (do not confuse this protocol with the amortized
and honest majority protocol in Definition 7.8). It does this by running k instances of ΠA,B

MULT,
using the same preprocessed data u for all instances.

Normally, it is of course not secure to reuse preprocessed data, but in this particular case it
works because the communication in ΠA,B

MULT is independent of u, and so is the simulation. More
precisely, ΠA,B

MULTk is clearly correct because each instance of ΠA,B
MULT runs with correctly dis-

tributed preprocessed data. It is also private: we can simulate by first simulating the corrupted
party’s part of u and then running k instances of the rest of S’s code. Again, the only source
of error is the case where the real protocol computes an incorrect result, but the probability of
this happening for any of the k instances is at most a factor k larger than for a single instance,
by a union bound, and so is still negligible.

However, this leads to a contradiction with the result of [WW10]: they showed that the
amount of preprocessed data needed for a secure multiplication is at least some non-zero number
of bits w. It also follows from [WW10] that if we want k multiplications on independently chosen
inputs this requires kw bits. So if we consider a k large enough that kw is larger than the size
of u, we have a contradiction and the theorem follows.

We now generalise to dynamic communication patterns. As in the proof of Theorem 7.1 we
can find a party Pi such that with some constant positive probability p the party Pi does not
send a message and no party anticipates a message from Pi. Assume without loss of generality
that this is party Pn. Assume first that p is negligibly close to 1. In that case the parties can
apply the above protocol unmodified. Consider then the case where p is not negligibly close to
1. We also have that p is not negligibly close to 0. Hence there is a non-negligible probability
that Pn sends a message and a non-negligible probability that Pn does not send a message. The
decision of Pn to communicate or not can depend only on four values:

• Its share an of a.

• Its share bn of b.

• Its share un of the correlated randomness.
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• Its private randomness, call it rn.

This means that there exist a function %(an, bn, un, rn) ∈ {0, 1} such that Pn communicates iff
%(an, bn, un, rn) = 1. Observe that the decision can in fact not depend more than negligibly on
an and bn. If it did, this would leak information on these shares to the parties P1, . . . ,Pn−1
which already know all the other shares. This would in turn leak information on a or b to the
parties P1, . . . ,Pn−1, which would contradict the simulatability property of the protocol. We
can therefore without loss of generality assume that there exist a function %(un, rn) ∈ {0, 1}
such that Pn communicates iff %(un, rn) = 1.

Assume that with non-negligible probability over the choice of the un received by Pn it hap-
pens that the function %(un, rn) depends non-negligibly on rn, i.e., for a uniform rn it happens
with non-negligible probability that %(un, rn) = 0 and it also happens with non-negligible prob-
ability that %(un, rn) = 1. Since rn is independent of the view of the parties P1, . . . ,Pn−1, as
it is the private randomness of Pn, it follows that the probability that one of the other parties
anticipate a message from Pn is independent of whether %(un, rn) = 0 or %(un, rn) = 1. Hence it
either happens with non-negligible probability that %(un, rn) = 0 and yet one of the other parties
anticipate a message from Pn or it happens with non-negligible probability that %(un, rn) = 1
and yet none of the other parties anticipate a message from Pn. Both events contradict the
correctness of the protocol. We can therefore without loss of generality assume that there exist
a function %(un) ∈ {0, 1} such that Pn communicates iff %(un) = 1. By assumption we have
that p is non-zero, so there exist some un such that %(un) = 0. We can therefore condition the
execution on the event %(un) = 0. Let PU be the distribution from which u is sampled. Consider
then the random variable PU ′ which is distributed as PU under the condition that %(un) = 0. We
claim that if we run ΠMULT with PU ′ instead of PU then the protocol is still secure. Assuming
that this claim is true, A and B can apply the above protocol, but simply use (ΠMULT, PU ′)
instead of (ΠMULT, PU ).

What remains is therefore only to argue that (ΠMULT, PU ′) is secure. To simulate the proto-
col, run the simulator S′A for (ΠMULT, PU ) until it outputs a simulated execution where Pn did
not communicate. Let E be the event that Pn does not communicate. Since it can be checked
from just inspecting the view of the real execution of (ΠMULT, PU ) (or the simulation) whether
E occurred, it follows that E occurs with the same probability in the real execution and the
simulation (or at least probabilities which are negligible close) or we could use the occurrence of
E to distinguish. Since E happens with a positive constant probability it then also follows that
the real execution conditioned on E and the simulation condition on E are indistinguishable, or
we could apply a distinguisher for the conditioned distributions when E occurs and otherwise
make a random guess to distinguish the real execution of (ΠMULT, PU ) from its simulation. This
shows that S′A simulates (ΠMULT, PU ′).

A generalisation. We note that Theorem 3 easily extends to any output secret sharing scheme
with the following property: Given shares c1, ..., cn of c, there is a function φ such that one can
reconstruct c from c1, ..., cn−1, φ(cn) and given c and c1, ..., cn−1 one can simulate φ(cn) with
statistically close distribution. The proof is the same as above except that in the output phase,
B sends φ(cn) to A, who computes c and sends it to B.
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Theorem 3 shows, for instance, that the SPDZ protocol [DPSZ12] has optimal communication
for the class of gate-by-gate protocols using additive secret-sharing: it sends O(n) messages for
each multiplication gate, and of course one needs to send Ω(n) messages if all n players are to
communicate, as mandated in the theorem. Note also that in the dishonest majority setting,
the privacy threshold of the secret-sharing scheme used has to be n−1, so we cannot have a gap
between the reconstruction and privacy thresholds, and so amortisation tricks based on packed
secret-sharing cannot be applied. We therefore do not consider any lower bounds for amortised
MGP’s.

7.4.2 Protocols based on any Secret-Sharing Scheme

Note that if we consider an MGP whose output sharing scheme is not the additive scheme, the
protocol ΠA,B

MULT in the proof of Theorem 7.4 may not work. This is because it is no longer clear
that given your own share of the product and the result, the other party’s share is determined.
In particular, the distribution of the other share may depend on the preprocessed data we
consume and so if we just send that share in the clear, it is not obvious that we can reuse the
preprocessing.

The solution is to not send shares in the clear, but have the parties securely compute the
output from their shares. This can be done using an existing general protocol for secure com-
putation in the preprocessing model. This will mean that we can indeed reuse preprocessed
data consumed by the MGP protocol itself. However, we now consume new preprocessed data
for every instance of the reconstruction protocol since this protocol requires communication. It
turns out that if we use a variant of the MGP that computes, not just one product, but an
inner product of long enough vectors, we can still obtain a contradiction. This works because
we can show that computing the inner product of long vectors requires lots of preprocessed
data. On the other hand, the inner product itself is just one field element, therefore the cost of
reconstructing such a small result is not significant.

In order to obtain the above result and give more details, we proceed by proving some
auxiliary results with lower bounds on the amount of preprocessed data needed for a secure
evaluation of a function f .

7.4.2.1 Lower bounds for secure function evaluation in the preprocessing model.

In this section we will give lower bounds for secure implementations of functions f : X ×Y → Z
in the PU , PV -preprocessing model, which for simplicity of exposition we refer to as PUf ,Vf , that
outputs correlated randomness for the semi-honest setting. In particular, we are in the setting
where the parties A,B have access to a functionality that gives a random variable Uf to A
and Vf to B with some guaranteed joint distribution PUf ,Vf of Uf , Vf . Given this, the parties
compute securely a function f : X × Y → Z where A holds x ∈ X , and B holds y ∈ Y. This
function should have no redundant inputs for party A 4 :

∀x, x′ ∈ X (x 6= x′ → ∃y ∈ Y : f(x, y) 6= f(x′, y)) (7.3)
4 Party A must enter all the information about X into the protocol. An example of a function that satisfies

this property is the inner product IP.
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The authors of [WW10] obtained Theorem 7.5 that gives a lower bound on the conditional
entropy of PUf ,Vf . Their bound applies for input distributions X and Y which are independent
and uniformly distributed. This implies worst case communication complexity. Our bound in
Theorem 7.6 also applies to independent and uniform distributions.

Theorem 7.5. Let f : X × Y → Z be a function that satisfies property (7.3). Assume there
exists a protocol having access to PUf ,Vf which is an ε-secure implementation of f in the semi-
honest model with t = 1 corruptions. Then

H(Uf |Vf ) ≥ max
y

H(X|f(X, y))− (3|Y| − 2)(ε log |Z|+ h(ε))− ε log |X | − h(ε).

Our general result will only apply to functions where the output lives in a ring Z. As it
will become apparent, for the next theorem we require the following property for a function
f : X × Y → Z:

∀x, x′ ∈ X (x 6= x′ → ∃y1, y2 ∈ Y : f(x, y1)− f(x, y2) 6= f(x′, y1)− f(x′, y2)) (7.4)

Note that the bound in Theorem 7.5 still applies for functions f that satisfy properties (7.3)
and (7.4).

In the following we explore the lower bounds on the amount of preprocessed data with respect
to composition of functions. In Theorem 7.6 we prove a lower bound on the conditional entropy
of PUh,Vh for a function h which is a linear combination of two functions f and g. Our bound
also applies to compositions of k functions where k is an arbitrary number. Basically, we show
that the amount of preprocessed data you need to compute the sum of f and g is the sum of
what you need to compute f and g separately, as long as f and g are applied to distinct and
independent inputs. We clearly need this assumption, as otherwise the theorem is clearly false,
just think of applying f = g on the same inputs.

Theorem 7.6. Let f : X × Y → Zf , g : Z × W → Zg be functions that satisfy properties
(7.3) and (7.4). Assume that Zf = Zg. Let h be a linear combination of f and g, namely:
∀x ∈ X , y ∈ Y, z ∈ Z, w ∈ W, h(x, z, y, w) := αf(x, y) + βg(z, w) for some α, β 6= 0. If there
exists a protocol that securely implements the function h with access to PUh,Vh , then it holds
that

H(Uh|Vh) ≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)) .

Furthermore, the function h will have the following property:

∀x 6= x′ ∈ X , z 6= z′ ∈ Z ∃y1, y2 ∈ Y, w1, w2 ∈ W :
h(x, z, y1, w1)− h(x, z, y2, w2) 6= h(x′, z′, y1, w1)− h(x′, z′, y2, w2) (7.5)

Proof. We start by proving that the function h has this property:

∀x, x′ ∈ X , z, z′ ∈ Z((x, z) 6= (x′, z′)→
∃y ∈ Y, w ∈ W : h(x, z, y, w) 6= h(x′, z′, y, w) (7.6)
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By assumption we consider the following two properties on the function g:

∀z 6= z′ ∈ Z ∃w ∈ W : g(z, w) 6= g(z′, w) (7.7)

∀z 6= z′ ∈ Z ∃w1, w2 ∈ W : g(z, w1)− g(z, w2) 6= g(z′, w1)− g(z′, w2) (7.8)

and properties (7.3) and (7.4).
In order to prove properties (7.6) and (7.5) for the function h we proceed as follows:

Case 1. x = x′, z 6= z′:
Suppose that ∃y such that f(x′, y) = f(x′, y). By assumption ∃w ∈ W : g(z, w) 6= g(z′, w).
Therefore, it follows that f(x′, y)− f(x, y) 6= g(z, w)− g(z′, w) and property (7.6) holds.

Case 2. x 6= x′, z = z′:
Suppose that ∃w such that g(z′, w) = g(z′, w). By assumption ∃y ∈ Y : f(x, y) 6= g(x′, y).
It follows that f(x′, y)− f(x, y) 6= g(z, w)− g(z′, w) and property (7.6) holds.

Case 3. x 6= x′, z 6= z′:
Let c = f(x′, y) − f(x, y) for some y ∈ Y. By assumption ∃w1, w2 ∈ W such that c1 =
g(z, w1) − g(z′, w1) and c2 = g(z, w2) − g(z′, w2) such that c1 6= c2. Without loss of
generality, assume that c 6= c1 then f(x′, y) − f(x, y) 6= g(z, w1) − g(z′, w1) and property
(7.5) follows.

Since the function h satisfy property (7.6) it also has property (7.3) and hence we get from
Theorem 7.5 that

H(Uh|Vh) ≥ max
y,w

H(X,Z|h(X,Z, y, w)) .

We then get that:

H(Uh|Vh) ≥ max
y,w

H(X,Z|αf(X, y) + βg(Z,w)) (7.9)

≥ max
y,w

H(X,Z|f(X, y), g(Z,w)) (7.10)

≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)) (7.11)

Inequality (7.11) follows from the independence of X,Z. This proves the theorem.

Remark 7.1. The above theorem also applies to multiplicative relations ruling out the cases
where g(z, w) = 0 and f(x, y) = 0.

Exploiting Theorem 7.6 we prove a lower bound for the inner product function IPk as per
Definition 7.6.

Lemma 7.7. Let κ ≥ 1 and let f : X × Y → Z be a multiplication function as per Definition
7.5. If there exist a protocol ΠIPk which securely implements the inner product function IPk

with error probability ε in the semi-honest model and having access to PUIPkVIPk
then

H(UIPk |VIPk) ≥ k ·max
y

H(X|f(X, y)) (7.12)
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Proof. Since the function f satisfies properties (7.3) and (7.4), a straightforward application of
Theorem 7.6 for k = 2 yields H(UIP2 |VIP2) ≥ 2 ·max

y
H(X|f(X, y)). However it is easy to see

that the proof of Theorem 7.6 extends to addition of k functions for any k, so the lemma follows
in the same way from this more general result.

Utilising Theorem 7.6 in the following we prove that any function whose “preprocessing
complexity” is large enough requires lots of communication. What “large enough” means here is
determined by the output secret-sharing scheme used in the protocol, in a sense we make precise
below. In the following, when f is a function with two inputs and one output, we will speak
about a protocol for computing shares of an f -output, denoted by Πf−output. This is essentially
the same as an MGP except that we replace multiplication by f . So the protocol takes as input
shares of x1 and x2 and computes shares of f(x1, x2) as output. Note that the inputs x1, x2 may
be vectors of field elements, whereas we will by default assume that the output is a single field
element.

In the sequel, for simplicity of exposition let Lf denote a lower bound on the amount of
preprocessed data needed for a secure implementation of f in the preprocessing model and let
Uf denote an upper bound.

Reconstruction Protocol Πrec. Let S n
t be the secret-sharing scheme as per Definition 7.3

and let f ′S n
t
be the reconstruction function of S n

t . Then, we can securely implement the function
f ′S n

t
in the preprocessing model via the protocol ΠSPDZ yielding the protocol Πrec.5. It follows

that Πrec demands communication and that its complexity depends only on the underlying
secret-sharing scheme S n

t . In this case we obtain an upper bound Urec on the amount of
preprocessed data consumed by Πrec.

Theorem 7.8. Consider the preprocessing model where t of the n players may be passively
corrupted. Let Πrec be a secure output reconstruction protocol with access to PUrec,Vrec for the
secret-sharing scheme Ŝ n

t . Let f be a function with two inputs and one field element as output
such that Urec < Lf . There exists no passively secure n-player protocol Πf−output with expected
anticipated communication complexity ≤ t for computing shares of an f -output with Ŝ n

t as
output secret-sharing scheme.

Proof. We start by assuming a fixed communication pattern. Suppose for contradiction that
there exists a protocol Πf where at most t players communicate. Assume that it is the t first
parties. Given two parties A and B, we are going to construct a two-party protocol ΠA,B

f which
on input a, b from A,B, respectively, securely computes f(a, b). The idea is to execute the
Πf−output protocol in which A emulates the t players who communicate while B emulates the
rest of the parties but we are interest just for one additional party, say Pt+1. In particular,
protocol ΠA,B

f (a, b) proceeds as follows:

Protocol ΠA,B
f (a, b):

Input Phase:
5Note that any protocol in the preprocessing model can be used.
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1. Parties A,B secret share their inputs a, b using the secret-sharing scheme S n
t . More

specifically, A computes [a]S n
t ← Share(a, n, t) and B computes [b]S n

t ← Share(b, n, t).
2. Party A sends the input share (at+1, . . . , an) to party B and Party B sends the input

shares (b1, . . . , bt) to party A.

Evaluation Phase:
1. Parties A,B invoke the protocol Πf−output where A emulates the t players who com-

municate, and we assume these are the first t players. This means that this phase
involves no communication between A and B, but it may consume some preprocessed
data. The execution of Πf−output yields a sharing of [c]S n

t and outputs (c1, ..., ct) to
party A and (ct+1, . . . , cn) to party B.

Output Phase:
1. Both parties locally invoke protocol ΠRec with access to PUrec,Vrec which on input

[c]Ŝ n
t outputs the result f(a, b).

Correctness of the protocol follows immediately from the correctness of Πf−output and ΠRec.
The protocol can be argued to be secure(private). More specifically, the simulator SA of ΠA,B

f

proceeds as follows. In the input phase, the parties receive only an unqualified set of shares
whose distribution can be simulated perfectly. There is no communication to be simulated in
the evaluation phase. In the output phase, simulation is guaranteed by the invocations of the
sub-simulator of the secure protocol ΠRec. Hence, it follows that

SD(Exec
ΠA,B
f

Adv (σ, (a, b)),SSA(σ, (a, b))) ≤ ε(σ).

We can claim the following: Note that the communication in ΠA,B
f is actually independent

of the preprocessed data needed in order to securely compute f . Therefore, while reusing the
same preprocessed data for each invocation of Πf−output, we could have executed ` instances of
ΠA,B
f on independent inputs without affecting correctness since the simulation is independent of

the preprocessed data. However, since protocol ΠRec is interactive its preprocessed data must
be refreshed for each of the ` executions of ΠRec. This means that the amount of preprocessed
data needed in order to compute ` instances of f is Uf + ` · Urec. So if we consider an ` large
enough such that ` · Lf > Uf + ` · Urec, we have a contradiction and the theorem follows.

The generalization to dynamic communication patterns follows along the lines of the proof of
Theorem 7.4: there we split the players in a maximal unqualified set (n−1 players) and the rest
(1 player). Here we do the same except that the maximal unqualified set has t players and n− t
remain. We then argue exactly as in the proof of Theorem 7.4 that decisions to send/receive
cannot depend on private randomness or shares, and therefore we can build a new protocol that
can be used in our construction of a 2-party protocol.

Given a function f with one output and a non-zero lower bound, we can add it to itself on
distinct inputs a sufficient number of times in order to satisfy the condition in the above theorem.
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An example of a function f is the inner product function IPk which is the composition of k
MULT functions. In Lemma 7.7 we obtained a lower bound LIPk on the amount of preprocessed
data consumed by a protocol that securely implements the function IPk. Now, if k is large
enough to satisfy the condition Urec < LIPk , then it holds that ` ·Urec+ LMULT < ` ·LIPk for large
enough ` leading to a contradiction with Theorem 7.8.

7.5 On the Necessity of Model Extension
In this section we provide a simple example to illustrate why deviations made by an active
adversary from passively secure protocols based on packed secret sharing schemes, result in a
linear attack on the underlaying SIMD circuit, as opposed to an additive attack. Indeed consider
the n-party protocol where P1 holds an input block a = (a1, a2) ∈ F2, P2 holds an input block
b = (b1, b2) ∈ F2 and after the protocol terminates P2 should learn c2 = a2 ⊗ b2. Consider the
following simplified passively secure MPC protocol against an adversary corrupting P1.

1. P1 computes and deals among all parties a degree-d packed Shamir sharing [a]d.

2. P2 computes and deals among all parties a degree-d packed Shamir sharing [b]d.

3. Every party Pi locally computes ci = ai · bi and sends the result to P2.

4. P2 recovers the value c2 in c by computing some fixed linear combinations on (c1, · · · , cn).
That is, c2 =

∑n
i=1 γici for some γ1, · · · , γn ∈ F.

Next, notice that since [b]d is a degree-d packed Shamir sharing, any set of d+ 1 parties can
completely recover b. Thus, there exists δ1

1 , · · · , δd+1
1 such that b1 =

∑d+1
i=1 δ

1
i bi.

Next, consider an adversary corrupting P1 instructing it to modify the shares (a1, · · · , an)
computed in Step 1 above by setting ai ← ai + δi/γi, for all 1 ≤ i ≤ d+ 1. Next we examine the
effects of this attack on the outputs of P2 in Step 4 above. Indeed, notice that

c2 =
n∑
i=1

γici =
d+1∑
i=1

γi(ai + δi/γi)bi +
n∑

i=d+2
γiaibi =

n∑
i=1

γiaibi +
d+1∑
i=1

δibi = a2b2 + b1.

Notice that the above attack changed the output value of P2 from a2b2 to a2b2 + b1. Such
an effect cannot be achieved by any additive attack on the circuit computing c = a ⊗ b since
an additive attack cannot mix intermediate values between the two different copies being simul-
taneously evaluated. However, this effect on the output of P2 can be easily simulated using a
linear attack on the second wire in the output bundle corresponding to c, adding to the it the
first wire in the input bundle corresponding to b.
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Secure Computation Definitions

For completeness, we recall the definition of secure computation based on [Gol04, Chapter 7]
here. We only recall the two party case as it is most relevant to our proofs. The description
naturally extends to multi-party case as well (details can be found in [Gol04]).
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Two-party computation. A two-party protocol problem is cast by specifying a random pro-
cess that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process
as a functionality and denote it F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where F = (F1, F2).
That is, for every pair of inputs (x, y), the output-pair is a random variable (F1(x, y), F2(x, y))
ranging over pairs of strings. The first party (with input x) wishes to obtain F1(x, y) and the
second party (with input y) wishes to obtain F2(x, y).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to protect
an honest party against dishonest behavior by the other party. In this paper, we consider ma-
licious adversaries who may arbitrarily deviate from the specified protocol. When considering
malicious adversaries, there are certain undesirable actions that cannot be prevented. Specifi-
cally, a party may refuse to participate in the protocol, may substitute its local input (and use
instead a different input) and may abort the protocol prematurely. One ramification of the ad-
versary’s ability to abort, is that it is impossible to achieve fairness. That is, the adversary may
obtain its output while the honest party does not. In this work we consider a static corruption
model, where one of the parties is adversarial and the other is honest, and this is fixed before
the execution begins.

Communication channel. In our results we consider a secure simultaneous message ex-
change channel in which all parties can simultaneously send messages over the channel at the
same communication round. Moreover, we assume an asynchronous network6 where the com-
munication is open (i.e. all the communication between the parties is seen by the adversary) and
delivery of messages is not guaranteed. For simplicity, we assume that the delivered messages
are authenticated. This can be achieved using standard methods.

Security of protocols (informal). The security of a protocol is analyzed by comparing
what an adversary can do in the protocol to what it can do in an ideal scenario that is secure
by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted third party to whom the parties send their inputs. The trusted party computes the
functionality on the inputs and returns to each party its respective output. Loosely speaking, a
protocol is secure if any adversary interacting in the real protocol (where no trusted third party
exists) can do no more harm than if it was involved in the above-described ideal computation.

Execution in the ideal model. As we have mentioned, some malicious behavior cannot be
prevented (for example, early aborting). This behavior is therefore incorporated into the ideal
model. An ideal execution proceeds as follows:

Inputs: Each party obtains an input, denoted w (w = x for P1, and w = y for P2).

Send inputs to trusted party: An honest party always sends w to the trusted party. A
malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to the
trusted party.

6The fact that the network is asynchronous means that the messages are not necessarily delivered in the order
which they are sent.
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Trusted party answers first party: In case it has obtained an input pair (x, y), the trusted
party first replies to the first party with F1(x, y). Otherwise (i.e., in case it receives only
one valid input), the trusted party replies to both parties with a special symbol ⊥.

Trusted party answers second party: In case the first party is malicious it may, depending
on its input and the trusted party’s answer, decide to stop the trusted party by sending
it ⊥ after receiving its output. In this case the trusted party sends ⊥ to the second party.
Otherwise (i.e., if not stopped), the trusted party sends F2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted party.
A malicious party may output an arbitrary (probabilistic polynomial-time computable)
function of its initial input and the message obtained from the trusted party.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality where F = (F1, F2) and let S =
(S1,S2) be a pair of non-uniform probabilistic expected polynomial-time machines (representing
parties in the ideal model). Such a pair is admissible if for at least one i ∈ {1, 2} we have that
Si is honest (i.e., follows the honest party instructions in the above-described ideal execution).
Then, the joint execution of F under S in the ideal model (on input pair (x, y) and security
parameter κ), denoted IDEALF,S(κ, x, y) is defined as the output pair of S1 and S2 from the
above ideal execution.

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exists no trusted third party). In this case, a malicious party
may follow an arbitrary feasible strategy; that is, any strategy implementable by non-uniform
probabilistic polynomial-time machines. In particular, the malicious party may abort the exe-
cution at any point in time (and when this happens prematurely, the other party is left with no
output). Let F be as above and let Π be a two-party protocol for computing F . Furthermore,
let A = (A1,A2) be a pair of non-uniform probabilistic polynomial-time machines (representing
parties in the real model). Such a pair is admissible if for at least one i ∈ {1, 2} we have that Ai
is honest (i.e., follows the strategy specified by Π). Then, the joint execution of Π under A in
the real model, denoted REALΠ,A(κ, x, y), is defined as the output pair of A1 and A2 resulting
from the protocol interaction.

Security as emulation of a real execution in the ideal model. Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, the definition asserts
that a secure two-party protocol (in the real model) emulates the ideal model (in which a trusted
party exists). This is formulated by saying that admissible pairs in the ideal model are able to
simulate admissible pairs in an execution of a secure real-model protocol.

Definition .9 (secure two-party computation). Let F and Π be as above. Protocol Π is said
to securely compute F (in the malicious model) if for every pair of admissible non-uniform
probabilistic polynomial-time machines A = (A1,A2) for the real model, there exists a pair of
admissible non-uniform probabilistic expected polynomial-time machines S = (S1,S2) for the
ideal model, such that:
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{IDEALF,S(κ, x, y)}κ∈N,x,y s.t. |x|=|y|
c≈ {REALΠ,A(κ, x, y)}κ∈N,x,y s.t. |x|=|y|

We note that the above definition assumes that the parties know the input lengths (this can be
seen from the requirement that |x| = |y|). Some restriction on the input lengths is unavoidable,
see [Gol04, Section 7.1] for discussion. We also note that we allow the ideal adversary/simulator
to run in expected (rather than strict) polynomial-time. This is essential for constant-round
protocols.

Proof Systems
We provide a detailed description of the proof systems used in this work.

Protocol ΠWIPOK

This is essentially the Feige-Lapidot-Shamir protocol, slightly reworded in [KO04], mostly for
notational convenience. We recall this protocol here. We denote the messages of this protocol
by (p1, p2, p3).

We will be working with the NP-complete language HC of graph Hamiltonicity, and thus
assume statements to be proven take the form of graphs, while witnesses correspond to Hamilton
cycles. If thm is a graph, we abuse notation and also let thm denote the statement “thm ∈ HC”.
We show how the proof system can be used to prove the following statement: thm∧ thm′, where
thm will be included as part of the first message, while thm′ is only decided in the last round.
The proof system ΠWIPOK runs κ parallel executions of the following 3-round protocol:

1. The prover commits to two adjacency matrices for two randomly-chosen cycle graphs G,G′.
The commitment is done bit-by-bit using a perfectly-binding commitment scheme.

2. The verifier responds with a single bit b, chosen at random.

3. If b = 0, the prover opens all commitments. If b = 1, the prover sends two permutations
mapping the cycle in thm (resp., thm′) to G (resp., G′). For each non-edge in thm (resp.,
thm′), the prover opens the commitment at the corresponding position in G (resp., G′).

The verifier checks that all commitments were opened correctly. If b = 0, the verifier
additionally checks whether both decommitted graphs are indeed cycle graphs. If b = 1,
the verifier checks whether each non-edge in thm (resp., thm′) corresponds to a non-edge
in G (resp., G′).

Note that the prover does not need to know either thm or thm′ (or the corresponding wit-
nesses) until the beginning of the third round. In the above proof system, we assume that thm
is fixed as part of the first-round message enabling us to claim stronger properties about the
proof system. In particular, ΠWIPOK proof system is complete and sound. More specifically,
the probability that an all-powerful prover can cause a verifier to accept when either thm or
thm′ are not true is at most 2−κ. We stress that this holds even if the prover can adaptively
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choose thm′ after viewing the second-round message of the verifier. Moreover, ΠWIPOK is witness
indistinguishable and it is a proof of knowledge for thm. (More formally, we can achieve a notion
similar to that of “witness-extended emulation” [Lin01] for thm.) Note also that the first round
of the above proof system (as well as the internal state of the prover immediately following this
round) is independent of thm or the associated witness.

Protocol ΠFS

As noted in Section 6.1.3, this is essentially the four round zero-knowledge protocol of Feige-
Shamir, except that we use non-malleable commitments in the first three round of the protocol.
Following the discussion in Section 6.1.3, we let nmcom be a non-malleable commitment scheme,
and make the simplifying assumption that nmcom has just three rounds and the first round is
committing. Again, these are purely for notational convenience and can easily be removed (as
discussed earlier).

We now simply list all the steps of this protocol following [KO04], but using nmcom. The
messages of this protocol are denoted by (fs1, fs2, fs3, fs4). It allows the prover to prove thm∧thm′
where thm is sent as part of the second round yet thm′ is only sent as part of the last round.
(Intuitively, statements thm, thm′ will correspond to statements st1, st2 of ΠWIPOK described
above.)

The proof system ΠFS proceeds as follows:

1. The first round is as in the original Feige-Shamir protocol but augmented with an nmcom
scheme. Explicitly, the verifier V selects randomly and independently two values σ1 and
σ2 and computes the first message of two independent executions of nmcom for σ1 and
σ2, with randomness ρ1, ρ2 respectively. Let nmσ1

1 and nmσ2
2 be these messages, which V

sends to P .
Moreover, V sends the first message p1 of a WIPOK proof system.

2. The prover P chooses a random challenge R ∈ {0, 1}2κ and computes CR = Eqcom(R; ζ).
Let eqthm denote the statement that Eqcom was formed correctly.

Let t̃hm denote the statement: (thm ∧ eqthm) ∨ (nmσ1
1 = nmcom1(σ1; ρ1)) ∨ (nmσ2

1 =
nmcom1(σ2; ρ2)) (this statement is reduced to a single graph t̃hm). Then, P sends CR and
also the first message p̃1 of a separate WIPOK proof system and message p2 of V ’s proof.

3. V sends the last message p3 of his WIPOK proof system and completes the proof for the
knowledge of the values in nmcom (which is also completed along with the first and second
rounds 7). V additionally sends a random R′ ∈ {0, 1}2κ and message p̃2 of P ’s proof

4. P decommits to R. Let prg be the statement that r = R + R′ is pseudorandom (i.e.,
∃s s.t. PRG(s) = r, where PRG is a pseudorandom function). Let t̃hm

′
be the statement

thm′ ∨ prg (reduced to a single graph t̃hm
′
). The prover send the last message p̃3 of the

ΠWIPOK proof system and completes the proof for the statement t̃hm ∧ t̃hm
′
.

7If k > 3 then V completes its WIPOK after the completion of nmcom.
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V checks the decommitment of R, and verifies the proof.

As claimed in [KO04] ΠFS proof system satisfies the following properties. It is complete and
sound (for a poly-time prover) for thm and thm′. Rounds 2− 4 constitute a proof of knowledge
for t̃hm. If a poly-time prover can cause a verifier to accept with “high” probability, then a
witness for thm ∧ eqthm can be extracted with essentially the same probability. If eqthm is
true, then with all but negligible probability prg will not be true. Soundness of the proof of
knowledge sub-protocol then implies that t̃hm

′
is true. But this means that thm′ is true. ΠFS

is also zero-knowledge (in addition, to simulating for t̃hm, the simulator also uses the equivocal
commitment property to decommit to an R such that prg is true.). Furthermore, ΠFS is an
argument of knowledge for thm.

Note that although we are using nmcom we are not making any claim here that uses non-
malleability. All claims above simply rely on the hiding of nmcom. The non-malleability is used
by the two-party protocol which uses ΠFS.

Also note that in order to handle a general nmcom of k rounds, simply execute the first k−3
rounds before the protocol above begins. The statements are then modified to work with the
transcript, rather than the first message of the protocol.

UC Security

In this section we briefly review UC security. For full details see [Can01].

The basic model of execution. Following [Gol01], a protocol is represented as an interactive
Turing machine (ITM), which represents the program to be run within each participant. Specif-
ically, an ITM has three tapes that can be written to by other ITMs: the input and subroutine
output tapes model the inputs from and the outputs to other programs running within the same
“entity" (say, the same physical computer), and the incoming communication tapes and outgoing
communication tapes model messages received from and to be sent to the network. It also has an
identity tape that cannot be written to by the ITM itself. The identity tape contains the pro-
gram of the ITM (in some standard encoding) plus additional identifying information specified
below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances
of ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI
is an ITM along with an identifer that distinguishes it from other ITIs in the same system.
The identifier consists of two parts: A session-identifier (SID) which identifies which protocol
instance the ITM belongs to, and a party identifier (PID) that distinguishes among the parties in
a protocol instance. Typically the PID is also used to associate ITIs with “parties", or clusters,
that represent some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes
in certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in
the system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of
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bits written on the input tape of M in this run. (In fact, in order to guarantee that the overall
protocol execution process is bounded by a polynomial, we define n as the total number of bits
written to the input tape of M , minus the overall number of bits written by M to input tapes of
other ITMs.; see [Can01].)

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adver-
sarial environment is formalized. Next, an “ideal process" for carrying out the task at hand is
formalized. In the ideal process the parties do not communicate with each other. Instead they
have access to an “ideal functionality," which is essentially an incorruptible “trusted party" that
is programmed to capture the desired functionality of the task at hand. A protocol is said to
securely realize an ideal functionality if the process of running the protocol amounts to “emu-
lating" the ideal process for that ideal functionality. Below we overview the model of protocol
execution (called the real-life model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running
an instance of a protocol Π, an adversary A that controls the communication among the parties,
and an environment Z that controls the inputs to the parties and sees their outputs. We
assume that all parties have a security parameter n ∈ N. (We remark that this is done merely
for convenience and is not essential for the model to make sense). The execution consists of
a sequence of activations, where in each activation a single participant (either Z, A, or some
other ITM) is activated, and may write on a tape of at most one other participant, subject to
the rules below. Once the activation of a participant is complete (i.e., once it enters a special
waiting state), the participant whose tape was written on is activated next. (If no such party
exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information
on the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we
assume authenticated communication; that is, the adversary may deliver only messages that
were actually sent.

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by
the environment or due to a message delivered by the adversary, it follows its code and possibly
writes a local output on the subroutine output tape of the environment, or an outgoing message
on the adversary’s incoming communication tape. Finally our adversary can decide to corrupt
any honest party. In this case the input and the random coins used by this party are revealed
to the adversary.

The protocol execution ends when the environment halts. The output of the protocol exe-
cution is the output of the environment. Without loss of generality we assume that this output
consists of only a single bit.
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Let REALπ,A,Z(n, z, r) denote the output of the environment Z when interacting with par-
ties running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . .
as described above (z and rZ for Z; rA for A, ri for party Pi). Let REALπ,A,Z(n, z) random
variable describing REALπ,A,Z(n, z, r) where r is uniformly chosen. Let REALπ,A,Z denote the
ensemble {REALπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing
the protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient
in the ideal protocol is the ideal functionality that captures the desired functionality, or the
specification, of that task. The ideal functionality is modeled as another ITM (representing a
“trusted party") that interacts with the parties and the adversary. More specifically, in the ideal
protocol for functionality F all parties simply hand their inputs to an ITI running F . (We will
simply call this ITI F . The SID of F is the same as the SID of the ITIs running the ideal
protocol. (the PID of F is null.)) In addition, F can interact with the adversary according to
its code. Whenever F outputs a value to a party, the party immediately copies this value to its
own output tape. We call the parties in the ideal protocol dummy parties. Let Π(F) denote the
ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition .10. Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction
for UC security we have IDEALφ,S,Z ≈ REALπ,A,Z .

Definition .11. Let F be an ideal functionality and let Π be a protocol. We say that Π
UC-realizes F if Π UC-emulates the ideal process Π(F).

The Common Reference String Model. In the common reference string (CRS)
model [CF01, CLOS02], all parties in the system obtain from a trusted party a reference string,
which is sampled according to a pre-specified distribution D. The reference string is referred to
as the CRS. In the UC framework, this is modeled by an ideal functionality FDCRS that samples
a string ρ from a pre-specified distribution D and sets ρ as the CRS. FDCRS is described in Figure
1.

General Functionality. We consider the general-UC functionality F , which securely evalu-
ates any polynomial-time (possibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The
functionality Ff is parameterized with a function f and is described in Figure 2.

Our protocol in Figure 6.1.4 (also Theorem 6.1) is for UC-securely realizing general func-
tionality Ff when the function f is restricted to be any deterministic poly-time function with n
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Functionality FD
CRS

1. Upon activation with session id sid proceed as follows. Sample ρ =
D(r), where r denotes uniform random coins, and send (crs, sid, ρ) to
the adversary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Figure .1: The Common Reference String Functionality.

inputs and single output. This functionality has been formally defined in Figure 3. As explained
in Section 6.1.4.1 the same protocol can be used to obtain a protocol that UC-securely realizes
the general functionality Ff for any function f .

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running
with parties P = {P1, . . . Pn} (of which some may be corrupted) and an
adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn) ←
f(x1, . . . , xn). For every Pi that is corrupted send adversary S the
message (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, Pi, yi) to Pi. (And ignores the message if inputs
from all parties in P have not been received.)

4. If all the parties in P are corrupted then the ideal functionality reveals
the internals coins used in the computation of f .

Figure .2: General Functionality.
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Functionality Ff

Ff parameterized by an n-ary deterministic single output function f , running
with parties P = {P1, . . . Pn} (of which some may be corrupted) and an
adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate y ← f(x1, . . . , xn).
Send adversary S the message (output, sid,P, y).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, y) to Pi. (And ignores the message if inputs
from all parties in P have not been received.)

Figure .3: General Functionality for Deterministic Single Output Functionalities.
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