
Efficient Multi-Party Computation:
from Passive to Active Security via Secure

SIMD Circuits

Daniel Genkin12, Yuval Ishai1, and Antigoni Polychroniadou3

1 Technion
{danielg3,yuvali}@cs.technion.ac.il

2 Tel Aviv University
3 Aarhus University
antigoni@cs.au.dk

Abstract. A central problem in cryptography is that of converting pro-
tocols that offer security against passive (or semi-honest) adversaries
into ones that offer security against active (or malicious) adversaries.
This problem has been the topic of a large body of work in the area of
secure multiparty computation (MPC). Despite these efforts, there are
still big efficiency gaps between the best protocols in these two settings.
In two recent works, Genkin et al. (STOC 2014) and Ikarashi et al.
(ePrint 2014) suggested the following new paradigm for efficiently trans-
forming passive-secure MPC protocols into active-secure ones. They start
by observing that in several natural information-theoretic MPC proto-
cols, an arbitrary active attack on the protocol can be perfectly simu-
lated in an ideal model that allows for additive attacks on the arithmetic
circuit being evaluated. That is, the simulator is allowed to (blindly)
modify the original circuit by adding an arbitrary field element to each
wire. To protect against such attacks, the original circuit is replaced by
a so-called AMD circuit, which can offer protection against such attacks
with constant multiplicative overhead to the size.
Our motivating observation is that in the most efficient known information-
theoretic MPC protocols, which are based on packed secret sharing, it
is not the case that general attacks reduce to additive attacks. Instead,
the corresponding ideal attack can include limited forms of linear com-
binations of wire values. We extend the AMD circuit methodology to
so-called secure SIMD circuits, which offer protection against this more
general class of attacks.
We apply secure SIMD circuits to obtain several asymptotic and concrete
efficiency improvements over the current state of the art. In particular,
we improve the additive per-layer overhead of the current best protocols
from O(n2) to O(n), where n is the number of parties, and obtain the first
protocols based on packed secret sharing that “natively” achieve near-
optimal security without incurring the high concrete cost of Bracha’s
committee-based security amplification method.
Our analysis is based on a new modular framework for proving reductions
from general attacks to algebraic attacks. This framework allows us to
reprove previous results in a conceptually simpler and more unified way,
as well as obtain our new results.

1 Introduction

1.1 Overview

Secure multiparty computation (MPC) is a central research area in cryptography.
An MPC protocol allows n ≥ 2 parties to compute a function of their inputs
without compromising the privacy of the inputs or the correctness of the outputs.
This should hold even if some of the parties are corrupted by an adversary. Since
its introduction in the 1980s [20, 12, 7, 2], there has been a rich body of work
dealing with many aspects of the problem, with a major focus on efficiency.

The difficulty of designing MPC protocols depends largely on the power of
the adversary. An important distinction is between MPC protocols that offer
security against passive (or semi-honest) adversaries, who follow the protocol’s
specification but try to learn information from messages they receive, and secu-
rity against active (or malicious) adversaries, who are allowed to deviate from
the protocol’s specification in arbitrary ways. The security guarantees in the
passive case are weaker, but the protocols are simpler and more efficient.

A common paradigm for designing actively secure MPC protocols (namely,
ones that are secure against active adversaries) is to start with a passively secure
protocol and then convert it into an actively secure protocol. Some relevant
techniques include general-purpose “GMW-style” compilers that employ zero-
knowledge proofs [12, 6], ad-hoc protocols for verifying the correct execution of
subprotocols [2, 7], cut-and-choose techniques [18], or “MPC in the head” [15,
16]. These techniques typically involve a significant overhead.

A different technique, which in some cases provides better results, was re-
cently proposed independently by Genkin et al. [11] and Ikarashi et al. [14]. These
works observe that in several known passively secure protocols for evaluating
arithmetic circuits, the effect of any active adversary is limited to an additive
attack on the circuit wires. That is, everything that an adversary can achieve
by attacking the real protocol for evaluating C he could have also achieved by
attacking an ideal circuit evaluation process in which he can blindly add a field
element of his choice to each wire in C. In the following, we refer to such proto-
cols as additively corruptible protocols. To secure such a protocol against active
adversaries, it is enough to run it on a so-called AMD circuit C – a randomized
circuit which is functionally equivalent to C but additionally offers resistance
against additive attacks.4 The results of [11, 14] simplify feasibility results in the
information-theoretic setting and obtain efficiency improvements, closing some
previous asymptotic efficiency gaps between passively secure and actively secure
protocols. This applies to the best known protocols that tolerate an optimal
number of corrupted parties (i.e., t < n/2 parties using secure point-to-point
channels or t < n parties in a suitable hybrid model).

Our motivating observation is that the best information-theoretic MPC pro-
tocols that tolerate a slightly sub-optimal number of corrupted parties (e.g.,

4 The work of [14] does not explicitly construct AMD circuits, but implicitly relies
on a simple construction of AMD circuits that tolerate a restricted class of additive
attacks which suffices in some cases.

t < 0.49n) are not additively corruptible. These protocols replace the standard
secret sharing used in optimally resilient protocols by a more efficient packed
secret sharing technique, and as a result provide better asymptotic efficiency.
The ideal attack corresponding to an active adversary attacking these protocols
can include a limited form of linear combinations that combine multiple wire
values.5 As a result, the techniques of [11, 14] do not apply to such protocols. In
the following, we refer to such protocols linearly corruptible protocols.

A second disadvantage of the techniques of [11, 14] is that they are tailored
to specific protocols. In particular, the part of the analysis that maps general
attacks to additive attacks is done in an ad-hoc way per protocol without a
unified framework that captures all additively corruptible protocols.

1.2 Our Contribution

In this paper we address both issues outlined above. First, we present a new
general framework for proving that a passively secure protocol is additively or
linearly corruptible. This framework is used to reprove previous results from [11]
in a more unified way, and is also used to prove our new results. Second, we
extend the AMD circuit constructions from [11] to offer security against linear
attacks. We use these two types of results to close previous efficiency gaps be-
tween passively secure and actively secure information-theoretic protocols based
on packed secret sharing.

We consider two regimes for such protocols: the single input, single circuit
regime and the Franklin and Yung (FY) [10] regime for simultaneously evaluating
` copies of the circuit on different inputs. Notice that the latter is a special case
of the former that allows for simpler and more efficient solutions. Currently, all
actively secure protocols that rely on packed secret sharing (in both regimes)
employ verification methods that introduce at least a quadratic overhead in the
number of parties n, for each circuit layer. We reduce this overhead to quasi-
linear (or linear in the FY regime), as in the best previous passively secure
protocols. In the FY regime, by evaluating the circuit on ` = Ω(n) inputs, the
amortized per-layer overhead is reduced to constant, leading to the first actively
secure protocols whose amortized communication complexity is only O(|C|+ n)
even for circuits that are very narrow and deep. See Table 1 for a more detailed
account of our results and a comparison with previous results.

In addition, we point out that the concrete efficiency of DIK-style protocols
[8, 1] (see [17]c entry of Table 1) involves prohibitively large constants when
applied with near-optimal security threshold. Indeed, the threshold obtained
directly by [8] is t < n/4 which is quite far from the optimal bound of n/2. To
improve on this threshold, a general technique due to Bracha [5] is applied for
boosting the resilience. The basic idea is that a constant-size committee runs
an optimally resilient protocol to emulate the role of each server in the low-
threshold protocol. While this technique can be implemented with a constant

5 In the full version we illustrate the necessity of extending the attack model to linear.
6 In the client-server model, where m (n) is the number of clients (servers).

Ref. Adv. Copies Resilience Communication complexity

[12] passive 1 |T | < n O(n2|C|) for boolean circuits

[17] passive 1 |T | < n O(n2|C|)
[2] passive 1 |T | < n/2 O(n2|C|)
[9] passive 1 |T | < n/2 O(n|C|+ n2)

[10] passive Θ(n) |T | < (1/2− ε)n O(n|C|)
[8]a passive Θ(n) |T | < (1/2− ε)n O(|C|+ n)

[8]b passive 1 |T | < (1/2− ε)n Õ(|C|+ n · dC + n2)

[17]a active 1 |T | < n O(n2|C|+ log |F| · dC)

[11] active 1 |T | < n O(n2|C|)
this work active 1 |T | < n O(n2|C|)

[3] active 1 |T | < n/2 O(n|C|+ n2 logn · dC) + poly(n)

[11] active 1 |T | < n/2 O(n|C|+ n2)

this work active 1 |T | < n/2 O(n|C|+ n2)

[17]b active Θ(n) |T | < (1/2− ε)n O(|C|+ n · dC)

[17]c active Θ(n) |T | < (1/2− ε)n O(|C|+m · dC)6

this work active Θ(n) |T | < (1/2− ε)n O(|C|+ n)

[8]c active 1 |T | < (1/2− ε)n Õ(|C|+ n2 · dC)

this work active 1 |T | < (1/2− ε)n Õ(|C|+ n · dC + n2)
Table 1. Comparison of information-theoretic MPC protocols for arithmetic circuits.
In the above, n is the number of parties, ε is an arbitrary small positive constant, C is
an arithmetic circuit or an SIMD circuit, dC is the multiplicative depth of C, and T is
the set of corrupted parties such that |T | ≤ t. The copies column indicates the number
of simultaneously evaluated circuit copies. Passively secure protocols achieve perfect
security while actively secure protocols realize C (with abort) with at most O(1/|F|)
simulation error. The communication complexity column counts the total number of
field elements exchanged between the parties. For the case of simultaneous evaluation
of multiple copies, we count the amortized cost for evaluating a single copy of C. The
protocols having resilience |T | < n are constructed on the OT or OLE hybrid model.

Note that the Õ notation suppresses logarithmic factors.

multiplicative overhead, this constant is very large. Our actively secure protocols
natively achieve a near-optimal security threshold with a low overhead, inheriting
this feature from the passively secure protocols on which they are based.

A key ingredient in our results is an extension of the additive attacks model
considered in [11, 14], which we now explain in more detail. Protocols that utilize
packed secret sharing typically operate on SIMD circuits. An SIMD circuit is a
generalization of arithmetic circuits, composed by `-gates which get as input
two wire bundles of size ` output a wire output bundle of size ` obtained by
performing ` point-wise multiplications, additions and subtractions in parallel.
Thus, SIMD circuits simultaneously evaluate ` copies of the same arithmetic
circuit, on different inputs. Next, for protocols based on packed secret sharing,
the ideal attack corresponding to deviations made by an active adversary can
include a limited form of linear combinations of wire values. Thus, we extend the
additive attacks considered in [11] to capture a stronger class of attacks, called
linear attacks, applied to SIMD circuits.

A linear attack on an SIMD circuit changes the computation of a multiplica-
tion `-gate by adding to the gate’s output bundle a linear function f : F2` → F`
of all the wires in the gate’s two input bundles. In addition, we also allow a linear
attack to specify an additive attack on all wire bundles inside the SIMD circuit.
We note that for the case where ` = 1 linear attacks are equivalent to additive
attacks (see Section 2.2 for details).

In the sequel, we prove that for natural protocols based on packed secret
sharing, any deviation made by an active adversary actually corresponds to a
linear attack on the underlying SIMD circuit.

2 Detailed Overview of Results

2.1 Actively Secure MPC Protocols from AMD/SIMD Circuits

Our approach for constructing actively secure MPC protocols is as follows. We
present a general framework and prove that any passively secure protocol π, sat-
isfying the framework’s requirements is indeed additively or linearly corruptible
depending on whether π uses packed secret sharing or not. Next, in order to
transform any passively secure protocol for evaluating a circuit C, which meets
the framework’s requirement, into an actively secure protocol, we apply the same

passive protocol on a different circuit C
AUG

which is essentially the secure version
of C. We thus transfer the responsibility of handling the consequences resulting

from an active adversary deviating from the protocol, to C
AUG

.
We now describe different applications of our framework for existing MPC

protocols. See Table 1 for a concise summary.
Applying our framework to an arithmetic version of the passively secure

GMW protocol [12, 17], in Theorem 10 we match the results of [11, Theorem
1.5] obtaining an actively secure protocol for computing a circuit C, without an
honest majority, using O(n2|C|) calls to an OLE-oracle.7 In the honest majority
setting, applying our framework to the passively secure DN protocol [9], we match
the results of [11, Theorem 1.4] and [14] obtaining an actively secure protocol
with communication complexity of O(n|C|+ n2) field elements.

Next, in the FY regime, by applying our framework to the passively secure
DIK protocol ([8]a), we improve the result of [17]b by eliminating the dependence
of the additive term on the depth of the circuit.

Theorem 1. Let n, t, ` be positive integers such that n = 2t+2`−1 and let C be
an n-party SIMD `-circuit over a finite field F. Then, there exists a protocol π,
in the FY regime, that (t, ε)-securely computes C with abort for ε = O(` log `/|F|)
and with communication complexity of O(n|C|+ n2) field elements. Setting ` =
Θ(n) yields an amortized communication complexity of O(|C|+n) field elements.

Finally, applying our framework to the passively secure DIK protocol in the
single input single circuit regime ([8]b), we improve the actively secure protocol

of [8]c by reducing its additive term from Õ(n2 · dC) to Õ(n · dC + n2).

7 In fact, we slightly improve the construction of [11] by reducing the statistical sim-
ulation error from O(|C|/|F|) to O(1/|F|).

Theorem 2. Let n, t, ` be positive integers such that n = 2t + 2` − 1 and
let C be an n-party circuit over a finite field F. Then there exists an n-party
protocol π, in the single circuit single input regime, that (t, ε)-securely com-
putes C with abort for ε = O(` log `/|F|) and with communication complexity

Õ
(
(|C|n+ n2 · dC)/`+ n2

)
field elements. By setting ` = Θ(n) we obtain that

the communication complexity of π is Õ
(
|C|+ n · dC + n2

)
field elements.

2.2 Additive and Linear Attack Secure AMD/SIMD Circuits

We now define the notion of linear-attack security. Let C be a circuit to be
computed. We say that a randomized SIMD circuit C is an ε-linear-attack secure
implementation of C if C correctly computes C, when not attacked, and moreover
any linear attack on C has the same effect on the outputs of C (up to ε statical
error) as applying some additive attack on the inputs and outputs of C alone.

Definition 1 (Linear-attack and additive-attack security). A random-
ized SIMD circuit C is said to be an ε-linear-attack secure implementation of a
(possibly randomized) circuit C : (F`)n → (F`)k if the following holds:

– Completeness. For all x ∈ (F`)n it holds that C(x) ≡ C(x).

– Linear-Attack security. For any circuit C
L

obtained by subjecting C to a linear
attack L, there exists ain ∈ (F`)n and a distribution Aout over (F`)k such that

for any x ∈ (F`)n it holds that SD(C
L

(x),C(x + ain) +Aout) ≤ ε, where SD
denotes statistical distance between two distributions.

Finally, we say that C is an additive-attack-secure implementation of C if
C has the same completeness property as above as well as the same security
property with the linear attack L replaced by an additive attack A.

Notice that restricting Definition 1 for ` = 1 yields exactly the model consid-
ered in [11]. This is the case since for non-SIMD circuits, any additive attack can
be converted into a linear attack. Conversely, we notice that a linear attack on
the output of a multiplication gate can be easily converted to an additive attack
on its two inputs. Notice that this equivalence does not hold when ` > 1.

In Section 5, we present a construction for securing circuits against additive
attacks. While our construction has the same asymptotic efficiency as the con-
struction of [11], it has much better concrete efficiency, as well as an improved
soundness error of O(1/|F|) (compared to O(|C|/|F|) in [11]).

Theorem 3 (Cf. Theorem 6). For any arithmetic circuit C : Fn → Fk there
exists a randomized circuit C : Fn → Fk such that C is an ε-additive-attack secure
implementation of C where ε = O(1/|F|) and |C| = O(|C|).

Next, departing from the case of ` = 1, in the full version we present a
construction for securing SIMD circuits against linear attacks.

Theorem 4. For any SIMD circuit C :
(
F`
)n → (

F`
)k

there exists a randomized

SIMD circuit C such that C is an ε-linear-attack secure implementation of C where
ε = O (` log `/|F|) and |C| = O(|C|+ log `).

3 Our Techniques

3.1 Constructing Actively Secure MPC Protocols

Our framework for proving that a passively secure protocol π is in fact additively
or linearly corruptible, consists of three steps. We point out that while these steps
modify the original protocols, are only a thought-experiment used to prove the
main claim about the effect of an active adversary on the underlying circuit
that parties try to evaluate. The only real modification required to the protocol
in order to transform it to an actively secure protocol, is to execute it on an
additive-attack or linear-attack secure circuit (see below).

Step 1: Protocol randomization. In order to convert an active adversary
controlling a set of parties T to an additive attack, we first transform a protocol
π to another protocol πT such that all the messages mT ,T sent by the parties in

T to the parties in T (except during the last communication round) syntactically
depend only on the randomness of π. In particular, we require thatmT ,T does not

depend on the inputs xT of the parties in T or on the messages that the parties
in T receive during the protocol. In such case we say that πT is T -randomized.

We first show that for many natural MPC protocols, for any set of parties
T , such that |T | is below the privacy threshold of a protocol, it is possible to
construct a T -randomized protocol, πT , such that any deviation from π made by
an active adversary has the same effect as performing the same deviation from
πT . In this case we say that πT is T -equivalent to π. See Definition 3.

Notice that T -randomization requirement is stronger than privacy. This is
since T -randomization requires that the values of mT ,T do not depend on the

inputs of the parties in T or on messages that parties in T received as opposed
to privacy which makes a similar requirement on the distribution of mT ,T . See
Step 2 for the necessity of the T -randomization requirement.

Step 2: From general adversaries to additive attacks. We now reduce any
adversary controlling a set of parties T , attacking a T -randomized protocol π, to
an additive attack on the protocol circuit Cπwhere Cπ is a direct implementation
of the arithmetic operations performed by π. Cπ gets as input the inputs x of
the parties in π as well the randomness r used in π. It then evaluates π on inputs
(x; r) and outputs the outputs of all the parties following an execution of π(x; r).

Since π is T -randomized we can simulate from the randomness r for π and
from the inputs xT , the view ũT (except during the last round) of the parties in
T . Next, we determine the additive attack on Cπ corresponding to an adversary
Adv controlling the parties in T as follows. We first honestly simulate the parties
in T on their view ũT and obtain the messages m̃T ,T sent by the parties in T
to the parties in T during an honest execution of π. Next, we invoke Adv on the
view ũT and obtain the messages m̃Adv

T ,T sent by the parties in T to the parties

in T during a real execution of π in the presence of Adv. Finally we determine
the additive attack A on Cπ by computing A← m̃Adv

T ,T − m̃T ,T .

Since π is T -randomized, it is the case that inside Cπ under the additive
attack A it holds that m̃Adv

T ,T = m̃T ,T + A, for any input xT of the parties in T

as well as for any messages that these parties receive during π. We thus correctly
simulate, inside Cπ, the effect of Adv on π. Notice that this is not necessary true
in case π is T -private since for any selection of the randomness r, the specific
values of the messages sent by the parties in T to Adv might depend on their
inputs xT to π. Since xT is not known to the simulator, it cannot generate the
correct view ũT required in order to compute m̃Adv

T ,T and m̃T ,T .

Step 3: Translate attacks on Cπ to attacks on C. We translate additive
attacks on Cπ to equivalent attack on C. In Section 7, we present the notion of
homomorphic circuits and prove that if a circuit C′ is homomorphic to a circuit C
then for any additive attack A′ on C′ there exists an equivalent additive attack
A on C such that CA(x) = C′A

′
(x), for all x. Next, extending the notion of

circuit homomorphism to SIMD circuits, in the full version we define the notion
of `-homomorphic circuits and prove that if a circuit C′ is `-homomorphic to an
SIMD circuit C, then for any additive attack A′ on C′ there exists an equivalent
linear attack on C such that CL(x) = C′A

′
(x) for all x.

Application to natural MPC protocols. In Section 8 we apply the above
transformations on the arithmetic version of the passively secure GMW protocol,
proving that it is additively corruptible. Next, in the full version we apply the
above transformations to the passively secure DN and DIK protocols, proving
that these protocols are additively and linear corruptible, respectively.

MPC protocols using linear or additive attack secure circuits. The no-
tions of linear and additive-attack security only require that any attack will be
equivalent to an additive attack on the inputs and the outputs of the evaluated
circuit. Thus, directly executing an additively or linearly corruptible MPC pro-
tocol over an additive-attack secure or linear-attack secure circuit C still leaves
the inputs and the outputs of C unprotected. Instead, before securing C against
additive or linear attacks, we first modify C to CAUG which gets as inputs an
AMD encoding of C’s inputs and produces an encoding of C’s outputs. We then

transform CAUG to an additive-attack or linear-attack secure circuit C
AUG

and
evaluate C

AUG
using a passively secure protocol, asking each party to locally

compute an AMD encoding of the inputs as well as locally decode the outputs.

3.2 Securing Circuits Against Additive and Linear Attacks

We first present our techniques for additive-attack security (see Section 5). Given
a circuit C, in the additive-attack secure version C of C, every wire of C is paired
with a wire that carries a corresponding MAC tag. Next, each gate in C is re-
placed by a small gadget computing the gate’s result as well as its corresponding
MAC tag. In addition, this gadget also gets as inputs the MAC tags correspond-
ing to the gate’s inputs. Using these tags, the gadget verifies that the gate’s
result was computed correctly. Notice that the MAC tag verification itself is also
vulnerable to additive (and later linear) attacks. However, we construct the ver-
ification circuit in such a way that even in the presence of attacks, it outputs a
random value if the MAC computation or MAC verification fails for some gate.

The basic additive-attack secure circuit compiler. Similar to [4, 11] we
use a multiplicative MAC in order to additive-attack secure the output of each

gate. Concretely, for each input gate a, its corresponding MAC tag will be a′ =
a · v where v is a randomly selected field element acting as the MAC key (fixed
to be the same value for all gates). Next, for every addition gate c = a + b

with inputs a, b and associated MAC tags a′, b′, we compute the MAC tag c′

associated with c directly by computing c′ = a′ + b′.

For every multiplication gate c = a · b with inputs a, b and associated MAC
tags a′, b′, we need to ensure the correct computation of c = a · b. Given a
MAC tag of the expected result of c and the MAC tags of a, b, we could have
verified that under an additive attack indeed c · v = a · b · v. Thus, we must
somehow combine the (assumed to be correct) MAC tag values a′ = a · v and
b′ = b · v in order to generate the tag of the expected result a · b · v. Moreover,
this tag generation must be done in such a way that ensures that no combination
of attacks on the tag generation circuit and on the multiplication gate’s actual
computation, can produce an incorrect result without being detected.

In [11], this was solved by setting the MAC tag c′ to be c′ = a′ ·b′ = a ·b ·v2.
The construction of [11] was based on the fact that an additive attack A on the
computation of c′A = (a′ + Aa′,c′)(b

′ + Ab′,c′) introduces additional monomials
of the form Ab′,c′ ·a′ = Ab′,c′ ·av or Aa′,c′ ·b′ = Aa′,c′ ·bv and it cannot introduce
additional monomials of the form a′ · b′ = a · b · v2, where Aa′,c′ denotes the
attack A restricted to the wire connecting the gates a′, c′ inside C. Next, in [11]
it was shown that in case these additional monomials are present, they cannot
be canceled out by any other combination of additive attacks, thereby making
C abort the computation by masking its results with a completely random value.

The main problem with the basic construction of [11] is that even when no
attacks are present, the degree of the MAC key v inside c′ increases from v to
v2. This limits the construction of [11] to only low-degree circuits as well as
requiring complicated ad-hoc gadgets to support addition and subtraction gates
with MAC tags having different degrees of v. Finally, in order to additive-attack
secure arbitrary-degree circuits, [11] employs a degree reduction procedure vastly
increasing the concrete overhead of the overall construction.

An efficient MAC combination gadget. In Construction 1, we solve the
problem of combining MAC tags in a different way. Let a′ = a · v and b′ = b · v.
We first compute c′ as c′ = a′ · b = (a · v) · b. Moreover, we also compute
c′′ = a ·b′ = a · (b ·v). Therefore, if no additive attack is present, it is always the
case that c′ − c′′ = 0. However, notice that an additive attack on c′ can only
produce monomials of the form Aa′,c′ ·b or of the from Ab,c′ · (a ·v). In contrast,
notice that any additive attack on c′′ can only produce monomials of the form
Aa,c′ · (b ·v) and Ab,c′ ·a which cannot be canceled out by any of the monomials
produced by the attack on c′. Thus, by checking that c′ − c′′ = 0, we either
obtain that c′ − c′′ is non-zero with high probability (making the entire circuit
to abort) or that no attack was mounted on the circuits computing c′ and c′′.
In the latter case, we obtain that c′ = a · b · v, which is the correct MAC tag of
the expected result of the multiplication gate c = a · b under the key v.

Computing multiplication gates. Next, we use the MAC tag c′ computed
previously in order to verify the correct computation of c. We achieve this by

computing the output of c and then MAC it by multiplying with the MAC key
v. Next, we check that the above result matches the known-good MAC tag c′.
This last check is implemented by computing c · v − c′ and having C abort in
case c ·v−c′ 6= 0. Notice that any additive attack on c can only introduce (after
the multiplication by the MAC key) monomials of the from a · v or b · v which
cannot be canceled-out by the MAC tag a · b · v. Hence, we conclude that in the
presence of an additive attack the gate output check fails, making C abort.

Computing addition gates. Notice that in the above described construction,
the degree of the used MAC key v is always 1 and in particular it does not increase
after the computation of multiplication gates. Therefore, given an addition gate
c = a + b, we can compute the MAC tag for c by computing c′ = a′ + b′. This
avoids the ad-hoc gadget of [11] for additive-attack securely computing MAC
tags where the inputs of the addition gate are of different degrees. Eliminating
this gadget also simplifies the circuit randomization process (see below).

Avoiding degree-reduction. Next, since the degree of the key does not
increase after the execution of each multiplication, this allows us to directly
additive-attack secure arbitrary circuits without the need to reduce the degree
(as opposed to the construction of [11]). This, together with a simplified cir-
cuit randomization process (described below), induces a big improvement in the
concrete overhead of the construction compared to the construction of [11].

Circuit randomization process. The above described construction only
achieves additive-attack security for the case where the inputs to each multipli-
cation gate are almost random (See Definition 5). Moreover, it is also required
that each input of C is also almost random (individually). We force the inputs of
a multiplication gate c = a·b to be almost random as follows. First, we additively
secret share a and b to (a−r1, r1) and (b−r2, r2). We then compute the output
of c by c = (a− r1)(b− r2) + (a− r1) · r2 + r1 · (b− r2) + r1 · r2 = a · b. Notice
that in this case, the inputs of every multiplication gate are uniformly random.
Randomizing the inputs of C is done similarly, see full version for details.

Protecting SIMD circuits against linear attacks. As described above, a
linear attack L on a multiplication gate c with input gates a and b specifies
a linear function f : F2` → F` (in the gate’s input bundles) to be added to
the gate’s output bundle. We specify f using two ` × ` matrices La,c and Lb,c,
changing the computation performed by c to be c = a � b + La,c · a + Lb,c · b.
Notice that L only introduces monomials of the form La,c · a, Lb,c · b but not
of the form a� b, where � denotes `-wide point-wise multiplication of two wire
bundles. In the full version, we extend the high-level ideas of the above described
construction to handle SIMD circuits and linear attacks.

Next, our basic construction for transforming an SIMD circuit C to a functionally-
equivalent linear-attack secure SIMD circuit C guarantees that every linear attack
on C is either equivalent to an additive attack on the inputs and outputs of C,
or some wire in a special bundle f, which denotes an error flag inside C, becomes
non-zero. In such a case, we would like another bundle f ′ to be almost random.
In the full version, we design a special-purpose gadget, called Mix circuit, which
satisfies the above property, even in the presence of linear attacks.

4 Preliminaries

Arithmetic circuits. Following [11], an arithmetic circuit C is a directed
acyclic graph whose vertices are called gates and whose edges are called wires.
Every in-degree 0 gate in C is labeled by a variable from a set of variables
X= {x1, · · · , xn} and is referred to as an input gate. All other gates have in-
degree 2, are labeled by elements from {+,−,×} and referred to as add, sub and
mult gates, respectively. Every gate of out-degree 0 is called an output gate. We
assume that the output gates are ordered. In some cases we also allow in-degree
0 gates labeled by rand referred to as randomness gates. A circuit containing
rand gates is called a randomized circuit. For a (possibly randomized) circuit C
and for a gate g of C we denote by gx the distribution of the output value of g
(defined in a natural way) when C is being evaluated on an input x.

SIMD circuits. An SIMD circuit with bundle size ` is defined similar to
arithmetic circuits. We refer to the edges of an SIMD circuit C as wire bundles
or bundles and to vertices of an SIMD circuits as `-gates. We write C :

(
F`
)n →(

F`
)k

to indicate that C is an SIMD circuit with n input bundles and k output
bundles. Each multiplication, addition or subtraction `-gate of an SIMD circuit
gets as input two wire bundles of size ` and outputs a bundle of size ` obtained by
performing ` point-wise multiplications, additions or subtractions in parallel.8

We also allow SIMD circuits to contain an additional type of `-gates with
in-degree and out-degree 1, referred to as routing `-gates. Each routing `-gate is
labeled by a function ρ : [`] → [`]. We shall sometimes refer to these routing `-
gates as ρ-gates. A ρ-gate on an input bundle a = (a1, · · · , a`) outputs a bundle
b = (b1, · · · , b`) such that bi = aρ(i) for all 1 ≤ i ≤ `.
Additive attacks. An additive attack A changes the computation performed
by a circuit C by specifying for every wire in C, connecting gates a and b, a
value to be added to the output of a. The derived value is then used for the
computation of b. In addition, A specifies values to be added to the outputs of
C. Note that an additive attack on a circuit C is a fixed vector of field elements
which is independent from the inputs and internal values of C.

Linear attacks. A linear attack L on an SIMD circuit changes the computation
of a multiplication `-gate by adding to each wire in the gate’s output bundle a
linear function of all the wires in the gate’s two input bundles. In particular,
for any multiplication `-gate c with input bundles a and b, a linear attack L
specifies a linear function f : F2` → F` such that the output bundle of c is equal
to c = a � b + f(a,b), where � denotes point-wise multiplication of two wire
bundles. In addition, similar to additive attacks, we allow a linear attack L to
specify an additive attack Lout on the outputs of the SIMD circuit C.

Attacks on addition and subtraction gates. We do not allow linear attacks
on addition and subtraction gates. This is since mounting an attack of the form
f(a, b) = −a − b the adversary is able to fix an output of an addition gate

8 Notice that for the case of SIMD circuits, the notion of in-degree of a gate corresponds
to the number of its input wire-bundles (as opposed to individual wires). Thus the
in-degree of {×,+,−} gates is 2. The notion of out-degree is defined similarly.

c = a + b− a− b to be always zero. Therefore, allowing for such attacks means
that it is possible to override the output of these gates to be an arbitrary value.
Such attacks are not supported by our constructions. 9

Additive attacks on SIMD circuits. Note that allowing additive attacks on
wire bundles of SIMD circuits (in addition to linear attacks) will not provide the
adversary with additional capabilities in modifying the circuit’s computation.
This is since for any pair of attacks (A,L) on an SIMD circuit C where A is
an additive attack and L is a linear attack there exists a functionally-equivalent
linear attack L′. The linear attack L′ can be constructed as follows. First, the
additive attacks specified by A can be pushed “downstream” through the circuit
till the inputs of the multiplication gates and the outputs of the output gates.
Next, additive attacks on inputs of a multiplication gate c, can be added to the
diagonal of the appropriate matrices as specified by L, yielding L′.

Additive attacks in secure multi-party computation. In the following
we define the notion of additively corruptible versions of a functionality. With-
out loss of generality, we only consider functionalities where only P1 gets an
output. That is, functionalities of the form f : FI1 × · · · × FIn → FO1 where
(I1, · · · , In, O1) are positive integers. Note that we can move to individual out-
puts using a standard transformation (See [13, Section 2.5.2]).

Definition 2. Let C be an n-party circuit. We define the additively corruptible
version of C to be an n-party functionality fAC that takes additional input from
the adversary representing an additive attack, A, on C. For an input x and
additive attack A, fAC outputs CA(x). The notion of a linearly corruptible circuit
is defined similarly, replacing the additive attack A with a linear attack L.

Next, we define the notion of T -equivalent protocols.

Definition 3. Let π and π′ be two protocols for computing an n-party circuit C
in the f and f ′ hybrid models respectively. We say that π is T -equivalent to π′

if for any adversary Adv controlling a set of parties T ⊆ P and for any input x

it holds that RealAdv,fπ,T (x) ≡ RealAdv,f
′

π′,T (x).

5 Additive Security for Arithmetic Circuits

In this section we simplify the construction of [11] improving its additive-attack
security from O(|C|/|F|) to O(1/|F|), as well as improving its concrete efficiency.
Following the approach of [11], we first present a simpler construction whose
security holds only when the circuit’s wire values satisfy some local randomness
property (Construction 1). In the full version, we show how to eliminate this
assumption by applying general transformations to the circuit.

We begin by defining additive-attack security for specific input distributions.

Definition 4. Let F be a finite field, C : Fn → Fk an arithmetic circuit, and I a
distribution over Fn. We say that a circuit C : Fn → Fk+1 is an ε-additive-attack
secure implementation of C with respect to I if the following holds:

9 Note that linear attacks on multiplication gates suffice to achieve MPC tasks.

– Completeness. For all x ∈ Fn, C(x) ≡ C(x).

– Security with respect to I. For any additive attack A, there exists ain ∈ Fn

and a distribution Aout over Fk such that SD(C
A

(I),C(I + ain) +Aout) ≤ ε.

The construction guarantees security as defined in Definition 1 with ε =
O (1/|F|), under the assumption that the inputs of the circuit as well as the
inputs of each multiplication gate are sufficiently random. Unlike the basic con-
struction of [11], the construction described in this section does not require the
randomization of the inputs of addition and subtraction gates. Thus, below we
define a weaker notion of locally random circuits compared to the one used in [11],
by not imposing any requirement about the inputs of addition and subtraction
gates. This also greatly simplifies the construction of such circuits.

Definition 5 (Locally Random Circuits). Let F be a finite field, C be a
randomized arithmetic circuit. We say that C is locally ε-random with respect to
a distribution I if the following two properties hold.

1. Local randomization of input gates. For any y ∈ F and for any 1 ≤
i ≤ n the probability over selecting x← I that xi = y is at most |F| · ε.

2. Local randomization of multiplication gates. For any (y, z) ∈ F2 and
any pair of gates (a, b), whose outputs are the inputs to some multiplication
gate in C, it holds that the probability, over the internal randomness of C and
the selection x← I, that (ax, bx) = (y, z) is at most ε.

We now present our basic construction for constructing additive-attack circuits.

Construction 1 Let C : Fn → Fk be a circuit. Define a circuit C that on input
x computes z = C(x) and then performs the following:

MAC generation Circuit:

1. Generate a random elements r, v ∈ F and compute r′ ← r · v.

2. For each input gate c, compute the value c′ ← c · v.

3. For each non-input gate c let a, b be its inputs and let a′, b′ be the MAC tags
corresponding to a and b. Compute the MAC tag c′ as follows:

(a) If c is a multiplication gate, let c′ ← a′ · b and let c′′ ← a · b′.
(b) If c is an addition gate let c′ ← a′ + b′. Similarly, if c is a subtraction

gate let c′ ← a′ − b′.

MAC checking circuit:
3. For every input gate c in C, generate a random element tc and compute

gc ← c + r, h′c ← c′ + r′, g′c ← gc · v, fc ← h′c − g′c.

4. Compute f1 ←
∑

c∈inptC
tc · fc where inptC is the set of the input gates of C.

5. For every multiplication gate c, generate two random field elements tc, wc and
compute fc ← c′ − c′′, gc ← c · v, hc ← gc − c′.

6. Let mulC be the set of all multiplication gates in C, compute f2 ←
∑

c∈mulC
wc ·

fc and f3 ←
∑

c∈mulC
tc · hc.

7. Compute f← f1 ·s1 +f2 ·s2 +f3 ·s3 where s1, s2, s3 are random field elements.

Output generation: Output z + f · r where r is a random vector from Fk.

In the full version we prove the following theorems.

Theorem 5. Let C : Fn → Fk be a randomized arithmetic circuit which is
locally ε-random with respect to and input distribution I. Then the circuit C
obtained by applying Construction 1 to C is a (|F| · ε+ 1/|F|)-additive-attack
secure implementation of C with respect to I. Moreover, |C| = O(|C|).

Theorem 6 (Additive-attack security). For any arithmetic circuit C : Fn →
Fk there exists a randomized circuit C : Fn → Fk such that C is an ε-additive-
attack secure implementation of C where ε = O(1/|F|). Moreover, |C| = O(|C|).

Notice that unlike the work of [11], the error parameter of the construction
is O(1/|F|). This matches the result of [14], but in a stronger attack model.

6 From General Adversaries to Additive Attacks

In this section we reduce any general adversary attacking a randomized protocol
π to an additive attack on the protocol circuit Cπ defined as follows. We compile a
protocol π into a circuit, Cπ, by writing all local computations performed by the
parties as circuits and whenever a party Pi sends a message to Pj , we connect the
corresponding parts of the circuits representing Pi and Pj using wires. Notice
that for every input x and randomness r, it holds that π(x; r) = Cπ(x, r).

We now define the notion of a last-round-private protocol.

Definition 6. Let T be a set of corrupted parties and let π be a T -randomized
n-party protocol for computing an n-input circuit C : FI1×· · ·×FIn → FO1 . We
say that π is T -last-round-private if the following hold.

1. Structure of the last round. During the last round, only P1 computes the

output vector z, in the following way. Let T ′ ⊆ T be the set of parties from
T sending messages to P1 during the last round. Each output {zi}1≤i≤O1

is computed by P1 evaluating two linear functions FT and FT ′ such that
zi = FT (liT ,P1

) + FT ′(liT ′
,P1

) where the messages liT ,P1
, liT ′

,P1
are the shares

corresponding to zi received by P1 from the parties in T and T ′, respectively.

2. Privacy of the last round. Fix an input xT and randomness rT to the
circuit Cπ for the parties in T . In addition, fix an additive attack A on Cπ
and fix a view ûT of the parties in T during an execution of CA

π on (xT , rT).
Let Z be the distribution of outputs in CA

π conditioned on (xT , rT ,A, ûT)

and fix z from the support of Z. Finally, let l̂T ,P1 be the messages received by
P1 from the parties in T during the last round of CA

π as uniquely defined by

(xT , rT , ûT). We require that the distribution of the messages l̂T ′
,P1

, over the

unfixed randomness rT is uniform conditioned on FT ′(l̂T ′
,P1

) = z−FT (l̂T ,P1).

In the full version we prove the following theorem.

Theorem 7. Let π be a T -last-round-private and T -randomized protocol. Then
for any active adversary Adv controlling the parties in T there exists a simulator
Sim such that for any input x it holds that IdealSimfA

Cπ
,T (x) ≡ RealAdvπ,T (x).

7 Homomorphism for Standard Circuits

In this section we prove that if two circuits C and C′ meet certain properties,
then for any additive attack on C′ there exists an equivalent additive attack
on C. Applying this approach to Cπ, we prove that any additive attack on Cπ
corresponds to an additive attack on C.

Without loss of generality, we express every multiplication gate as a prod-
uct of its inputs where each input is an arbitrary fixed linear combination of
the preceding addition and subtraction gates up to the depth of the preceding
multiplication gate.

Definition 7. Let C be a randomized circuit and let c be an in-degree 2 multi-
plication gate inside C.We define two ordered sets leftc and rightc, as follows.

leftc =

{
a ∈ {×, input}

:
∃path from a to the first input of c
which only contains gates from the set {+,−}

}
rightc =

{
a ∈ {×, input}

:
∃path from a to the second input of c
which only contains gates from the set {+,−}

}
The ordered sets leftc and rightc naturally define two linear functions lc : F|leftc| →
F and rc : F|rightc| → F representing the output of c as a function of the outputs
of the preceding mult and input gates. More specifically, for any input x to C it
holds that cx = lc(ax) · rc(bx) where a = leftc and b = rightc.

We now express every output gate which is an addition or subtraction gate as
a fixed linear combination of the output of the proceeding multiplication gates.

Definition 8. Let C be a deterministic circuit and let c be an output gate that
is an add or sub gate. We define the ordered set inc as follows.

inc =

{
a ∈ {×, input}

:
∃path from a to either of the two inputs of c
which only contains gates from the set {+,−}

}
The set inc naturally defines a linear function fc : F|inc| → F representing the

output of c as a function of the outputs of the preceding mult and input gates.
More specifically, for any input x to C it holds that cx = fc(ax) where a = inc.

We now define the notion of circuit homomorphism. Later, we prove that if
a circuit C′ is homomorphic to a circuit C then any additive attack on C′ can be
simulated by an additive attack on C. Applying the above on MPC protocols,
as long as the circuit Cπ of a protocol π is homomorphic to C, then any additive
attack on Cπ can be simulated by an additive attack on C. Combining this with
the result of Section 6, we obtain that for any protocol π computing a circuit C,
which is T -randomized, T -last-round-private and homomorphic to C, any attack
mounted by an active adversary is equivalent to an additive attack on C.

Definition 9 (Circuit Homomorphism). Let C be a deterministic circuit. A
circuit C′ is said to be homomorphic to C if there exists a mapping H from the
input and mult gates of C to the gates of C′ such that the following properties
hold. Below, for any gate c of C we denote the output of H(c) by c′.

1. Inputs. For any input gate c of C and for any input x it holds that cx = c′x.

2. Multiplications. For any mult gate c we require that there exists constant
λc ∈ F with the following properties for any input x:

(a) It holds that c′x + λc = lc ((a′x + λa)a∈leftc) · rc
(
(b′x + λb)b∈rightc

)
.

(b) For every mult gate used for the computation of the output of c′ inside
C′, the left input is a linear function of lc ((a′x)a∈leftc) and the right input
is a linear function of rc

(
(b′x)b∈rightc

)
.

3. Outputs. We first require that both C and C′ have the same number of
output gates. Let c be the i-th gate of C, we distinguish two different cases.

(a) Let o′ be the i-th output gate of C′. If c is a mult gate, then o′x = c′x+λc.10

(b) If c is an add, or sub gate then the i-th output of C′, o′x is equal to
o′x = fc ((a′x + λa)a∈inc) for all input x.

Moreover, we require that the recovery of the output from the gates o′ of C ′

is performed without computing any mult gates.

Remark 1 Given two circuits C, C′, a mapping H, a constant λc and functions
lc and rc for every mult gate c in C, it is possible to decide in polynomial time
if C′ is homomorphic to C. Checking that the requirements of Definition 9 hold
can be done symbolically using the gate’s output as variables.

For simplicity of exposition, Definition 9 is tailored to protocols working on
additive secret sharing such as the GMW protocol. A simple generalization of
Definition 9 captures protocols working on any linear secret sharing scheme, such
as the DN and DIK. See full version for details.

Lemma 1. Let C be a deterministic circuit and let C′ be a circuit homomorphic
to C. Then for any additive attack A′ on C′ there exists an additive attack A on
C such that for any input x it holds that C′A

′
(x) = CA(x).

We now extend Lemma 1 to handle n-party circuits computed during an
MPC protocol. We begin by defining the notion of T -homomorphic circuits.

Definition 10. Let π be an n-party protocol, C be an n-party circuit and let
T be a set of parties. We say that Cπ is T -homomorphic to C if for any input
xT for the parties in T and for every randomness r, the circuit Cπ((xT , ·), r)
obtained by fixing the inputs xT and r inside Cπ is homomorphic to C(xT , ·).

In the full version we prove the following theorem.

Theorem 8. Let π be an n-party protocol for computing a circuit C : FI1×· · ·×
FIn → FO1 in the g-hybrid model and let T be a set of parties such that π is
T -randomized, T -last-round-private and Cπ is T -homomorphic to C. Then for
any active adversary Adv controlling the parties in T there exists a simulator
Sim such that for any input x it holds that IdealSimfA

C ,T
(x) ≡ RealAdv,gπ,T (x).

10 Notice that here we do not require that H(c) = o′. This is since already H(c) = c′

and moreover there exists a gate o′ such that o′ = c′x + λc.

8 The GMW Protocol

In this section we prove that an arithmetic generalization of the passively secure
GMW protocol [12] is additively corruptible. We first extend the GMW protocol
to the arithmetic setting [17], where the OT oracle is replaced by oblivious linear
function evaluation (OLE) [19].

Definition 11 (The OLE functionality). Let F be a finite field. We define
the functionality fOLE that on inputs (α, β) ∈ F2 from the sender and x ∈ F from
the receiver outputs ⊥ to the sender and α · x+ β to the receiver.

We now proceed describing an arithmetic version of the GMW protocol in the
OLE-hybrid model [12, 17]. We begin by describing the Input-ShareGMW and
MultGMW protocols used to evaluate input and multiplication gates.

Construction 2 (Subprotocol Input-ShareGMW) The subprotocol Input-ShareGMW

is defined as follows. Each party Pi on input x computes a random additive shar-
ing of x, denoted by [x]add = (x1, . . . , xn), and deals it among all the parties.

Construction 3 (Subprotocol MultGMW) The subprotocol MultGMW gets as
input additive sharings [a]add, [b]add and outputs an additive sharing [c]add such
that c = a · b. The protocol proceeds as follows.

1. Each ordered pair of parties Pi, Pj, such that i 6= j, performs the following.

(a) Pi generates a random value ri,j and acting as a sender sends (ai, ri,j)
to the OLE oracle. Pj acting as a receiver sends bj to the OLE oracle.

(b) The OLE oracle responds with si,j = ai · bj + ri,j to Pj.

2. Each party Pi computes ci ← ai · bi +
∑n

j=1
j 6=i

(sj,i − ri,j).

We now proceed in describing the passively secure GMW protocol.

Construction 4 (Passively secure GMW protocol) Let C : FI1×· · ·×FIn →
FO1 be an n-party circuit. The protocol GMWC for C proceeds as follows:

1. Input sharing phase. For each input gate associated to party Pi, party Pi
executes the protocol Input-ShareGMW described in Construction 2.

2. Circuit evaluation phase. For each gate c in C with input sharings
[a]add = (a1, . . . , an) and [b]add = (b1, . . . , bn) proceed as follows:

Evaluating addition and subtraction gates. For the case of addition
gates, all parties locally compute [c]add ← [a]add + [b]add. Similarly, for sub-
traction gates, all parties locally compute [c]add ← [a]add − [b]add.

Evaluating multiplication gates. All the parties execute the MultGMW

protocol described in Construction 3 on inputs [a]add and [b]add.

3. Output recovery phase. At the end of the computation, for each output
gate c of C all the parties hold a sharing [c]add corresponding to its value.
For each output gate c, the parties generate a random sharing [z]add of 0 and
compute [c′]add ← [c]add + [z]add. Parties {P2, · · · , Pn} send their shares of
[c′]add to P1. Then P1 recovers the output c by computing c←

∑n
i=1 c

′
i.

The works of [12, 17] analyzed the passively secure GMW protocol.

Theorem 9 ([12, 17]). For any n-party circuit C : FI1 × · · · × FIn → FO1 , the
protocol GMWC in the OLE hybrid model is passively secure against any adversary
controlling at most n − 1 parties. Moreover, the communication complexity (in
field elements) as well as the number of oracle calls of GMWC is O(n2|C|).

8.1 Randomizing the GMW Protocol

Note that the protocol Input-ShareGMW is already randomized. This is since ad-
ditive secret sharing is done by having the party Pi, holding the input x, send
random shares rj to all other parties and then compute his share to be x−

∑
j rj .

Therefore, the messages exchanged during the input sharing phase are already
input-independent. We now describe how to randomize the evaluation of multi-
plication gates in GMW protocol. In the MultGMW protocol, all messages received
by the parties are sent by the fOLE oracle. We thus construct the fTOLE oracle
which sends messages to the parties in T which only depend syntacticly on the
randomness of the protocol and not on the inputs of the parties in T .

Construction 5 (The fTOLE functionality) Let T be a set of parties. We de-
fine the functionality fTOLE that on inputs (α, β) from a party Pi acting as a
sender and x ∈ F from a party Pj acting as a receiver performs the following.

1. Pj ∈ T and Pi ∈ T . Let Ph be the first party not in T . fTOLE generates a
random value e, sends ⊥ to Pi and e to Pj and αx+ β − e to Ph.

2. Otherwise. In this case fTOLE sends ⊥ to Pi and αx+ β to Pj.

In the following we describe the MultTGMW protocol in the fTOLE hybrid model.

Construction 6 (Subprotocol MultTGMW) Let T be a set of parties and let Ph
be the first party not in T . The subprotocol MultTGMW, in the fTOLE hybrid model,
gets as input additive sharings of [a]add, [b]add and outputs an additive sharing
[c]add such that c = a · b. The protocol proceeds as follows.

1. Each ordered pair of parties Pi, Pj, such that i 6= j, performs the following.

(a) Pi generates a random value ri,j and acting as a sender sends (ai, ri,j)
to the fTOLE oracle. Pj acting as a receiver sends bj to the fTOLE oracle.

(b) The fTOLE oracle responds with si,j to Pj, and with s′i,j to Ph in case that

Pj ∈ T and Pi ∈ T .

2. Each party Pi ∈ T computes ci ← ai · bi +
∑n

j=1
j 6=i

(sj,i − ri,j).

3. Each party Pi ∈ T , such that Pi 6= Ph, generates his share ci of c uniformly
at random, computes di ← ai · bi +

∑n
j=1
j 6=i

(sj,i − ri,j) and sends (ci, di) to Ph.

4. Party Ph computes ch ← ah · bh +
∑

Pi∈T
Pi 6=Ph

(di − ci) +
∑

Pi∈T
Pj∈T

s′i,j.

Next, we describe the GMWTC protocol. In the full version we prove that
GMWTC is T -randomized and T -equivalent to GMWC.

Construction 7 (GMWTC protocol) Let C : FI1 × · · · × FIn → FO1 be an n-
party circuit and let T be a set of parties such that |T | < n. The protocol GMWTC
for C is defined to be the same as the GMWC protocol form Construction 4 except
that the parties execute the MultTGMW protocol instead of MultGMW.

Lemma 2. Let C be an n-party circuit. For any set of parties T such that |T | <
n the protocol GMWTC is T -randomized and is T -equivalent to GMWC.

8.2 The GMW Protocol in the Presence of an Active Adversary

In this section we prove that the execution of the passively secure GMW protocol
is additively corruptible. We begin by stating that GMWTC defined in Construc-
tion 4 is T -last-round-private as well as T -homomorphic to C.

Lemma 3. Let n be positive integer and let C be an n-party circuit. Then for
any set of parties T such that |T | < n it holds that the protocol GMWTC for
computing C is T -last-round-private as well as T -homomorphic to C.

Proof (sketch). The T -last-round-private property follows from the fact that
during the output recovery phase of the GMWTC , all the parties locally re-
randomize their shares with random sharings of 0. We now prove that CGMWT

C
is

indeed T -homomorphic to C. Fix randomness r for CGMWT
C

. Next, for any input
gate c of C, we set the homomorphism H to map c to the corresponding input
gate in CGMWT

C
. Finally, for every multiplication gate c of C, we set H to map

c to a wire in CGMWT
C

corresponding to the share ch, held by the party Ph in

step 4 of the MultTGMW protocol. Finally, we set λc to be the sum of all the shares
ci generated during steps 2 and 3 of MultTGMW. Notice that since MultTGMW is T -
randomized, λc can be uniquely determined from r. It can be easily verified that
for every choice of r the homomorphism H as well as the constants λc, where c

is a multiplication gate, satisfy all the requirements of Definition 9. ut
Combining the results of Lemmas 2,3 and Theorem 8 with additive-attack

constructions in Section 5 we obtain the following theorem.

Theorem 10 (Cf. Theorem 1.5 in [11]). For any n-party circuit C : FI1 ×
· · ·×FIn → FO1 there exists a protocol π for O(1/|F|)-securely computing C with
abort in the OLE hybrid model. Moreover π invokes the OLE oracle O(n2|C|)
times and has a total communication complexity of O(n2|C|) field elements.

Acknowledgments

We thank Manoj Prabhakaran, Amit Sahai and Eran Tromer for helpful discussions.

This research was supported by the European Union’s Tenth Framework Pro-

gramme (FP10/2010-2016) under grant agreement no. 259426 ERC-CaC. The first

author was also supported by the Check Point Institute for Information Security; the

Israeli Centers of Research Excellence I-CORE program (center 4/11); the Israeli Min-

istry of Science and Technology; the Leona M. & Harry B. Helmsley Charitable Trust.

The second author was also supported by ISF grant 1709/14, and BSF grant 2012378.

The third author was also supported by the Danish National Research Foundation;

the National Science Foundation of China (grant no. 61061130540) for the Sino-Danish

CTIC; the CFEM supported by the Danish Strategic Research Council.

References

1. Baron, J., El-Defrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: PODC. pp. 293–302 (2014)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC. pp. 1–10 (1988)

3. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multi-
party computation with a dishonest minority. In: CRYPTO. pp. 663–680 (2012)

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: EUROCRYPT. pp. 169–188 (2011)

5. Bracha, G.: An O(log n) expected rounds randomized byzantine generals protocol.
J. ACM 34(4), 910–920 (1987)

6. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC. pp. 494–503 (2002)

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC. pp. 11–19 (1988)

8. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation
and the computational overhead of cryptography. In: EUROCRYPT. pp. 445–465
(2010)

9. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: CRYPTO. pp. 572–590 (2007)

10. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC. pp. 699–710 (1992)

11. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC. pp. 495–504
(2014)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC. pp. 218–229
(1987)

13. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and
Constructions. Information Security and Cryptography, Springer (2010)

14. Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct
mpc scheme in t<n/2 from passively secure schemes with small overhead. IACR
Cryptology ePrint Archive 2014, 304 (2014)

15. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC. pp. 21–30 (2007)

16. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: CRYPTO. pp. 572–591 (2008)

17. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: TCC. pp. 294–314 (2009)

18. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: EUROCRYPT. pp. 52–78 (2007)

19. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

20. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS. pp.
160–164 (1982)

